Abstract:
One illustrative method disclosed herein includes, among other things, forming a sacrificial fin structure above a semiconductor substrate, forming a layer of insulating material around the sacrificial fin structure, removing the sacrificial fin structure so as to define a replacement fin cavity in the layer of insulating material that exposes an upper surface of the substrate, forming a replacement fin in the replacement fin cavity on the exposed upper surface of the substrate, recessing the layer of insulating material, and forming a gate structure around at least a portion of the replacement fin exposed above the recessed layer of insulating material.
Abstract:
Embodiments of the present invention provide transistors with controlled junctions and methods of fabrication. A dummy spacer is used during the majority of front end of line (FEOL) processing. Towards the end of the FEOL processing, the dummy spacers are removed and replaced with a final spacer material. Embodiments of the present invention allow the use of a very low-k material, which is highly thermally-sensitive, by depositing it late in the flow. Additionally, the position of the gate with respect to the doped regions is highly controllable, while dopant diffusion is minimized through reduced thermal budgets. This allows the creation of extremely abrupt junctions whose surface position is defined using a sacrificial spacer. This spacer is then removed prior to final gate deposition, allowing a fixed gate overlap that is defined by the spacer thickness and any diffusion of the dopant species.
Abstract:
A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
Abstract:
One method disclosed herein includes, among other things, forming sidewall spacers adjacent opposite sides of a sacrificial gate electrode of a sacrificial gate structure, forming a tensile-stressed layer of insulating material adjacent the sidewall spacers, removing the sacrificial gate structure to define a replacement gate cavity positioned between the sidewall spacers, forming a replacement gate structure in the replacement gate cavity, forming a tensile-stressed gate cap layer above the replacement gate structure and within the replacement gate cavity and, after forming the tensile-stressed gate cap layer, removing the tensile-stressed layer of insulating material.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a fin in a semiconductor substrate and performing an epitaxial deposition process using a combination of silane (SiH4), dichlorosilane (SiH2Cl2), germane (GeH4) and a carrier gas to form an epi semiconductor material around the fin, wherein the flow rate of dichlorosilane used during the epitaxial deposition process is equal to 10-90% of the combined flow rate of silane and dichlorosilane.
Abstract:
One illustrative method disclosed herein includes, among other things, performing an epitaxial deposition process to form an epi SiGe layer above a recessed layer of insulating material and on an exposed portion of a fin, wherein the concentration of germanium in the layer of epi silicon-germanium (SixGe1-x) is equal to or greater than a target concentration of germanium for the final fin, performing a thermal anneal process in an inert processing environment to cause germanium in the epi SiGe to diffuse into the fin and thereby define an SiGe region in the fin, after performing the thermal anneal process, performing at least one process operation to remove the epi SiGe and, after removing the epi SiGe, forming a gate structure around at least a portion of the SiGe region.
Abstract:
One illustrative method disclosed herein involves, among other things, forming a first epi semiconductor material on the exposed opposite sidewalls of a fin to thereby define a semiconductor body, performing at least one etching process to remove at least a portion of the substrate portion of the fin positioned between the first epi semiconductor materials positioned on the opposite sidewalls of the fin and to thereby define a back-gate cavity, forming a back-gate insulating material within the back-gate cavity and on the first epi semiconductor materials, forming a back-gate electrode on the back-gate insulation material within the back-gate cavity and forming a gate structure comprised of a gate insulation layer and a gate electrode around the semiconductor bodies.
Abstract:
One device disclosed includes a gate structure positioned around a perimeter surface of the fin, a layer of channel semiconductor material having an axial length in the channel length direction of the device that corresponds approximately to the overall width of the gate structure being positioned between the gate structure and around the outer perimeter surface of the fin, wherein an inner surface of the layer of channel semiconductor material is spaced apart from and does not contact the outer perimeter surface of the fin. One method disclosed involves, among other things, forming first and second layers of semiconductor material around the fin, forming a gate structure around the second semiconductor material, removing the portions of the first and second layers of semiconductor material positioned laterally outside of sidewall spacers and removing the first layer of semiconductor material positioned below the second layer of semiconductor material.
Abstract:
One method disclosed herein includes, among other things, forming sidewall spacers adjacent opposite sides of a sacrificial gate electrode of a sacrificial gate structure, forming a tensile-stressed layer of insulating material adjacent the sidewall spacers, removing the sacrificial gate structure to define a replacement gate cavity positioned between the sidewall spacers, forming a replacement gate structure in the replacement gate cavity, forming a tensile-stressed gate cap layer above the replacement gate structure and within the replacement gate cavity and, after forming the tensile-stressed gate cap layer, removing the tensile-stressed layer of insulating material.
Abstract:
A fin field effect transistor integrated circuit (FinFET IC) has a plurality of fins extending from a semiconductor substrate, where a trough is defined between adjacent fins. A second dielectric is positioned within the trough, and a protruding portion of the fins extends above the second dielectric. A first dielectric is positioned between the fin sidewalls and the second dielectric.