摘要:
The present invention generally relates to filling of a feature by depositing a barrier layer, depositing a seed layer over the barrier layer, and depositing a conductive layer over the seed layer. In one embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer. For example, the copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. In another embodiment, the seed layer comprises a copper allloy seed layer deposited over the barrier layer and a second seed layer deposited over the copper alloy seed layer. The copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof The second seed layer may comprise a metal, such as undoped copper. In still another embodiment, the seed layer comprises a first seed layer and a second seed layer. The first seed layer may comprise a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. The second seed layer may comprise a metal, such as undoped copper.
摘要:
A layer of tungsten nitride is deposited on the upper surface of a wafer. The deposition is performed by providing a gaseous mixture and providing energy to the gaseous mixture to form a plasma. The gaseous mixture includes a first gaseous composition containing tungsten and a second gaseous composition containing nitrogen and hydrogen. The second gaseous composition is one that does not have a gas phase reaction with the first gaseous composition to form tungsten nitride, unless energy is provided to the gaseous mixture. The first gaseous composition may be tungsten hexafluoride (WF6). The gaseous mixture may be infused with energy to form a plasma by providing it with energy from an rf signal. In the plasma, the nitrogen dissociates into nitrogen ions, and the tungsten separates from the fluorine. The nitrogen ions and tungsten then combine to form tungsten nitride (W2N), which deposits on the wafer's upper surface.
摘要:
A method and apparatus for depositing a titanium containing layer on a semiconductor substrate employing high density plasma processing techniques. The titanium source includes a TiCl4 gas which is flowed into a process chamber along with an inert gas source, such as argon and a flow of hydrogen gas. A plasma is present in the process chamber where the semiconductor substrate is situated. The apparatus includes a dome-shaped cover which forms part of the process chamber. The cover includes aperture centrally disposed therein and is adapted to produce a flow of TiCl4 gas that is directed substantially transverse to the semiconductor substrate, with a portion of the flow of hydrogen gas and the inert gas source positioned between the cover and the flow of TiCl4 gas.
摘要:
Plasma enhanced chemical vapor deposition (PECVD) reactors and methods of effecting the same are described. In accordance with a preferred implementation, a reaction chamber includes first and second electrodes operably associated therewith. A single RF power generator is connected to an RF power splitter which splits the RF power and applies the split power to both the first and second electrodes. Preferably, power which is applied to both electrodes is in accordance with a power ratio as between electrodes which is other than a 1:1 ratio. In accordance with one preferred aspect, the reaction chamber comprises part of a parallel plate PECVD system. In accordance with another preferred aspect, the reaction chamber comprises part of an inductive coil PECVD system. The power ratio is preferably adjustable and can be varied. One manner of effecting a power ratio adjustment is to vary respective electrode surface areas. Another manner of effecting the adjustment is to provide a power splitter which enables the output power thereof to be varied. PECVD processing methods are described as well.
摘要:
A method of film processing comprises forming an integrated titanium/titanium nitride (Ti/TiN) film structure having an intermediate layer. The intermediate layer comprises species containing Si, and preferably containing Si and Ti, such as titanium silicide (TiSix), or TiSixOy, among others. The intermediate layer protects the underlying Ti film against chemical attack during subsequent TiN deposition using a titanium tetrachloride (TiCl4)-based chemistry. The method allows reliable Ti/TiN film integration to be achieved with excellent TiN step coverage. For example, the film structure can be used as an effective barrier layer in integrated circuit fabrication.
摘要:
The invention is embodied by a plasma reactor for processing a workpiece, including a reactor enclosure defining a processing chamber, a semiconductor ceiling window, a base within the chamber for supporting the workpiece during processing thereof, the semiconductor ceiling including a gas inlet system for admitting a plasma precursor gas into the chamber through the ceiling, and apparatus for coupling plasma source power into the chamber.
摘要:
A method and apparatus for control of precursor and purge additive materials in a deposition system comprising a precursor material delivery system and a plurality of purge additive transfer lines connected between or at components in the precursor material delivery system. One of the plurality of purge additive transfer lines is connected between an ampoule and a liquid mass flow controller, another is connected between the liquid mass flow controller and a vaporizer and a third is connected to the vaporizer. The apparatus further comprises a process chamber connected to the precursor material delivery system and having a susceptor wherein one of the plurality of purge additive transfer lines is connected to the susceptor. With the apparatus and accompanying method, formation of particulate contaminants is greatly reduced. The purge additive provided at strategic locations within the deposition system provides a stabilizing effect to any precursor that remains in the transfer lines and helps to control the CVD reaction at the exclusion zone.
摘要:
A process is disclosed for preconditioning surfaces of a tungsten silicide deposition chamber, after a previous step of cleaning the chamber, and prior to depositing tungsten silicide on active substrates in the chamber, which first comprises treating the chamber surfaces with a gaseous silicon source, such as silane, and a tungsten-bearing gas, such as WF.sub.6, to form a first deposition of a silane-based tungsten silicide on the chamber surfaces. In a preferred embodiment, the preconditioning process further comprises subsequently treating the already coated chamber surfaces in a second step with a mixture of a tungsten-bearing gas, such as WF.sub.6, and a chlorine-substituted silane such as dichlorosilane (SiH.sub.2 Cl.sub.2), monochlorosilane (SiH.sub.3 Cl), or trichlorosilane (SiHCl.sub.3) to form a chlorine-substituted silane-based tungsten silicide deposition over the previous deposited tungsten silicide, prior to commencement of depositing tungsten silicide on active substrates in the deposition chamber.
摘要:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
摘要:
A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material in a pumping channel exhausting the chamber. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.