Abstract:
A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
Abstract:
A microelectronic package and method for manufacture. The package can include a support member and a microelectronic substrate positioned at least proximate to the support member. The microelectronic substrate can have a first surface and a second surface facing opposite the first surface, with the first surface having an outer edge and facing toward the support member. At least a portion of the first surface can be spaced apart from an interior surface of the support member to define an intermediate region. At least one conductive coupler is coupled between the microelectronic substrate and the support member. A generally electrically non-conductive material is positioned in the intermediate region with the material contacting the support member and the first surface of the microelectronic substrate and having an outer surface recessed inwardly from the outer edge of the microelectronic substrate.
Abstract:
A ball grid array for a flip-chip assembly is disclosed. The ball grid array includes a plurality of bumps bonded between an active surface of a semiconductor die and a top surface of a printed circuit board or any type of substrate carrier. The plurality of balls include at least one bump having a core material and an outer layer. The rigidity of the core material is greater than that of the material of the outer layer. Additionally, the melting temperature of the core material is higher than the material of the outer layer. By this arrangement, the core material with an outer layer provides bumps that are substantially uniform in height. In addition, the balls only procure marks or deformation to the core material during burn-in testing and reflow. Therefore, when bonding the semiconductor device to the substrate, the ball grid array provides sufficient electrical and mechanical connection despite any non-planarity in the active surface of the semiconductor device and the top surface of the substrate, and any differing height in the plurality of balls due to testing the semiconductor device.
Abstract:
Semiconductor package support elements including cover members attached to one or more reject die sites. Also, methods for making the support elements and for making semiconductor packages using the same. Reject die sites on defective substrates of a support element are covered prior to the encapsulation process using a cover member. The cover member comprises, for example, pressure-sensitive or temperature-activated tape, reject dies, or the like. The support elements and methods of the present invention virtually eliminate bleeding or flashing during encapsulation due to the presence of reject die sites. The support elements and methods of the present invention further ensure that functional dice are not sacrificed by being attached to reject die sites, thereby decreasing manufacturing costs while increasing yield of functional semiconductor packages.
Abstract:
A method of selectively adjusting surface tension of a soldermask material. Specifically, a method of selectively adjusting the surface tension of a soldermask material to promote adhesion of a molding compound in a ball grid array package while maintaining a low surface tension on the ball attach area to prevent bridging between the solder balls. Solder balls require a low surface tension soldermask to minimize bridging, while the molding compound requires a high surface tension to provide adequate adhesion to the surface of the soldermask. By exposing selected portions of the soldermask to an activation method, such as ultra-violet radiation, the surface tension of the soldermask can be varied such that different areas of the package exhibit different surface tensions.
Abstract:
The present invention provides a semiconductor device having a protective layer for use in packaging the semiconductor device. The apparatus includes a dielectric layer, a first passivation layer formed above the dielectric layer, and a protective layer formed above the first passivation layer, the protective layer adapted to reduce stress defect failures in the semiconductor device when packaged.
Abstract:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
Abstract:
A BGA package and a method of fabricating the BGA package is provided. The package includes a substrate having a first surface with a pattern of conductors thereon, and an opposing second surface with a die attach area thereon. A first solder mask is formed on the first surface with via openings to ball bonding pads on the conductors. A second solder mask is formed on the second surface with an opening on the die attach area. The opening in the second solder mask permits a die to be placed through the opening and adhesively bonded directly to the substrate. The die can then be wire bonded to the conductors and encapsulated in an encapsulating resin. In addition solder balls can be placed in the via openings and bonded to the ball bonding pads.
Abstract:
A method of forming high definition elements for electrical and electronic devices, substrates, and other components from or including viscous material. The method includes inverting the electrical components after the viscous material is applied and maintaining the inverted orientation until the viscous material dries or cures enough to maintain definition of its perimeter and edge characteristics.
Abstract:
A thermally conductive adhesive tape and method for its use in packaging integrated circuits fabricated on semiconductor material. The thermally conductive adhesive tape includes a thermally conductive base upon which an adhesive layer is laminated or coated onto at least one side of the thermally conductive base. Thermal energy generated by operating the integrated circuit may be transferred from the integrated circuit via the thermally conductive adhesive tape to a medium to which the semiconductor material is attached. As a result, any excessive heat that may negatively affect the performance of the integrated circuit is dissipated through the medium.