Abstract:
A semiconductor device includes an insulating film formed to cover an electric fuse (EF1), an insulating film (IL1), an insulating film (IL2), an electric fuse (EF1), an insulating film (IL1), and an insulating film (IL2). The electric fuse (EF1) includes a fuse-blowing portion (FC1), a first pad portion (PD1), and a second pad portion (PD2). The fuse-blowing portion (FC1) is formed between the first pad portion (PD1) and the second pad portion (PD2) in a first direction and is a rectangular shape having a first short side and a second short side along a second direction perpendicular to the first direction. The insulating film (IL1) is formed continuously between the first short side and the second short side to cover the surface of the fuse-blowing portion (FC1). The insulating film (IL2) is formed to planarly surround the insulating film (IL1) and is arranged at an interval from the insulating film (IL1). The stress of the insulating film (IL1) and the insulating film (IL2) is greater than a stress of the insulating film covering the insulating films.
Abstract:
To improve a tradeoff between ON voltage and ON/OFF loss while maintaining short-circuit tolerance, provided is a semiconductor device including an IGBT element; a super junction transistor element connected in parallel with the IGBT element; and a limiting section that limits a voltage applied to a gate terminal of the IGBT element more than a voltage applied to a gate terminal of the super junction transistor element.
Abstract:
It is an object of the invention to secure a large area of a photodiode and suppress operation property variation and malfunction in an imaging panel and an X-ray imaging device. An imaging panel (10) includes a substrate (40), a TFT (14), an interlayer insulating film (44), a metal layer (45), and a photodiode (15). A data line (12) and the photodiode (15) face each other in a thickness direction of the substrate. The interlayer insulating film (44), which is disposed between the TFT (14) and the photodiode (15), is an SOG film or a photosensitive resin film.
Abstract:
In some general aspects, an apparatus may include a first semiconductor die, a second semiconductor die, and a capacitive isolation circuit being coupled to the first semiconductor die and the second semiconductor die. The capacitive isolation circuit may be disposed outside of the first semiconductor die and the second semiconductor die. The first semiconductor die, the second semiconductor die, and the capacitive circuit may be included in a molding of a semiconductor package.
Abstract:
A method of manufacturing a semiconductor device including: (a) forming a first insulation film on a semiconductor substrate; (b) forming a first coil on the first insulation film; (c) forming a second insulation film on the first insulation film so as to cover the first coil; (d) forming a first pad on the second insulation film at a position not overlapped with the first coil in a planar view; (e) forming a laminated insulation film on the second insulation film, the laminated insulation film having a first opening from which the first pad is exposed; and (f) forming a second coil and a first wiring on the laminated insulation film, wherein the second coil is disposed above the first coil, the first coil and the second coil are not connected by a conductor but magnetically coupled to each other, the first wiring is formed from an upper portion of the first pad to an upper portion of the laminated insulation film and is electrically connected to the first pad, and the laminated insulation film includes a silicon oxide film, a silicon nitride film on the silicon oxide film, and a resin film on the silicon nitride film.
Abstract:
Connection patterns of plural diodes include a first series connection pattern and a second series connection pattern. The first series connection pattern extends from an input terminal in the X direction. The second series connection pattern has a portion through which a current flows to approach the input terminal. The first series connection pattern includes a first diode, which is the first diode counted from the input terminal. The second series connection pattern includes a second diode, which is the last diode counted from the input terminal. The second diode is disposed separately from the first diode with some distance therebetween in the Y direction. An N-type region of the first diode and a P-type region of the second diode directly oppose each other as viewed in a planar direction.
Abstract:
It is desirable to design and manufacture electronic chips that are resistant to modern reverse engineering techniques. Disclosed is a method and device that allows for the design of chips that are difficult to reverse engineer using modern teardown techniques. The disclosed device uses devices having the same geometry but different voltage levels to create different logic devices. Alternatively, the disclosed uses devices having different geometries and the same operating characteristics. Also disclosed is a method of designing a chip using these devices.
Abstract:
To improve a tradeoff between ON voltage and ON/OFF loss while maintaining short-circuit tolerance, provided is a semiconductor device including an IGBT element; a super junction transistor element connected in parallel with the IGBT element; and a limiting section that limits a voltage applied to a gate terminal of the IGBT element more than a voltage applied to a gate terminal of the super junction transistor element.
Abstract:
A method for forming a bipolar junction transistor includes forming a collector intrinsic region, an emitter intrinsic region and an intrinsic base region between the collector intrinsic region and the emitter intrinsic region. A collector extrinsic contact region is formed in direct contact with the collector intrinsic region; an emitter extrinsic contact region is formed on the emitter intrinsic region and a base extrinsic contact region is formed in direct contact with the intrinsic base region. Carbon is introduced into at least one of the collector extrinsic contact region, the emitter extrinsic contact region and the base extrinsic contact region to suppress diffusion of dopants into the junction region.
Abstract:
A semiconductor device includes a main processor, a normally-off processor, and at least one oxide semiconductor random access memory (RAM). The normally-off processor includes at least one oxide semiconductor transistor. The main processor is connected to the normally-off processor, and a clock rate of the main processor is higher than a clock rate of the normally-off processor. The oxide semiconductor RAM is connected to the normally-off processor. An operating method of the semiconductor includes backing up data from the main processor to the normally-off process and/or the oxide semiconductor RAM.