Abstract:
A system and method are disclosed in which flex cables are affixed to PCBs, for providing high-speed signaling paths between ICs disposed upon the PCBs. The flex cables are fixably attached to the PCBs so as to substantially mimic their structural orientation. Where the configuration includes more than one PCB, the flex cables include multiple portions which are temporarily separable from one another and from the die, using flex-to-flex and flex-to-package connectors, allowing field maintenance of the configuration. By routing the high-speed signals between ICs onto the flex cable, single-layer PCBs can be used for non-critical and power delivery signals, at substantial cost savings. By disposing the flex cables onto the PCB rather than allowing the cables to float freely, the configuration is thermally managed as if the signals were on the PCB and cable routing problems are avoided.
Abstract:
The apparatus and method described herein are for coupling an integrated circuit to a circuit board, while eliminating the need for a backing plate, when a compression socket is utilized. A plurality of tension pins are coupled to an integrated circuit for engaging a plurality of corresponding barrels in a circuit board to compress a compression socket to make an electrical connection between the integrated circuit and the circuit board.
Abstract:
A method and an apparatus for improving the delivery and filtering of power to a semiconductor device is disclosed by organizing out interconnects (pins, balls, pads or other interconnects) used to carry power in a striped configuration that shortens the conductive path required between a power source and a semiconductor device and that reduces the resistance of that conductive path.
Abstract:
A method for implementing a circuit component on a surface of a multilayer circuit board is provided. The circuit component includes a plurality of pins and the circuit board includes a plurality of electrically conductive vias penetrating at least one layer of the circuit board and being arranged so as to form at least one channel for routing one or more traces at one or more signal layers of the circuit board. The method comprises the step of forming at least one pin of the plurality of pins of the circuit component to have a length compatible with a depth of a corresponding via of the circuit board.
Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices. The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling, shock and vibrations and severe environment conditions in general. For leaded devices, the leads are oriented to face the thermal center of the devices and the system they interact with. For leadless devices, the mounting elements are treated or prepared to control the migration of solder along the length of the elements, to ensure that those elements retain their desired flexibility.
Abstract:
A power interconnection system comprising a plurality of z-axis compliant connectors passing power and ground signals between a first circuit board to a second circuit board is disclosed. The interconnection system provides for an extremely low impedance through a broad range of frequencies and allows for large amounts of current to pass from one substrate to the next either statically or dynamically. The interconnection system may be located close to the die or may be further away depending upon the system requirements. The interconnection may also be used to take up mechanical tolerances between the two substrates while providing a low impedance interconnect.
Abstract:
A method for implementing a circuit component on a surface of a multilayer circuit board is provided. The circuit component includes a plurality of pins and the circuit board includes a plurality of electrically conductive vias penetrating at least one layer of the circuit board and being arranged so as to form at least one channel for routing one or more traces at one or more signal layers of the circuit board. The method comprises the step of forming at least one pin of the plurality of pins of the circuit component to have a length compatible with a depth of a corresponding via of the circuit board.
Abstract:
A sheet capacitor of the invention has a contact portion formed in a through-hole requiring electrical connection with IC connection pin among the through-holes in which the IC connection pins are inserted, and a capacitor element connected to the contact portion. Another sheet capacitor of the invention includes an insulating board and a capacitor element mounted on the insulating board. The insulating board has a connection land with an IC at the upper side, and a connection land with a printed wiring board at the lower side. The capacitor element and connection lands at the upper and lower side of the insulating board are connected with each other electrically. In any one of these configurations, the capacitor element of large capacity and low ESL is connected closely to the IC, and the mounting area of the peripheral circuits of the IC can be increased.
Abstract:
A method and apparatus for electrically interconnecting a first circuit board having a power conditioning circuit and a second circuit board having a power dissipating component disposed therebelow along a z (vertical) axis is disclosed. In an illustrative embodiment, the apparatus comprises a first flexible circuit having a first set of raised conductive contacts, the first flexible circuit disposed on a first side of the second circuit board; and a second flexible circuit having a second set of raised conductive contacts, the second flexible circuit disposed on a second side of the second circuit board opposing the first side of the second circuit board. A power signal from the power conditioning circuit is provided to the second circuit board at least in part by one of the first set of raised conductive contacts on the flexible circuit and the second set of raised conductive contacts on the second flexible circuit and a ground return is provided to the second circuit board by the other of the first set of raised conductive contacts on the first flexible circuit and the second set of raised conductive contacts on the second flexible circuit.
Abstract:
A pin grid array integrated circuit connecting device which including a substrate, a sliding slice, a guiding frame and a driving apparatus. Said substrate further includes multiple holes to hold pins of a integrated circuit package, multiple conductive positioning components in the holes to hold said pins and connect said pins electrically, circuit device with proper circuit layout and multiple electrical connecting spots on the bottom of said substrate which connecting said multiple conductive positioning components thru said circuit device. The extra electronic components placed on said substrate will provide the additional function. Said sliding slice is placed on the top of said substrate and can be moved relatively. Multiple holes are placed on said sliding slice and positioned correspondingly to the holes on said substrate. Said guiding frame is placed on at least the two opposite sides of said substrate which guide said sliding move linearly along the extension of said guiding frame. Said driving apparatus is connecting to said sliding slice and, by rotating horizontally, drive said sliding slice to move in a proper manner linearly.