Abstract:
Imaging apparatus and methods using diffraction-based illumination are disclosed. An example apparatus includes a diffraction grating to redirect light from a light source toward a sample to thereby illuminate the sample. The example apparatus also includes an image sensor to detect a diffraction pattern created by the illuminated sample.
Abstract:
Drop detection are disclosed. An example liquid dispensing device includes a controller to control dispensing of a first drop from a first orifice and a second drop from a second orifice, a sensor to monitor the first orifice to detect at least one of a presence or an absence of a drop from the first orifice and, in response to the sensor detecting an absence of the first drop, the controller is to classify the first orifice as at least one of occluded or non-functioning.
Abstract:
In an embodiment, a fluid ejection device includes a die substrate having first and second fluid slots along opposite substrate sides and separated by a substrate central region. First and second internal columns of closed chambers are associated with the first and second slots, respectively, and the internal columns are separated by the central region. Fluidic channels extending across the central region fluidically couple closed chambers from the first internal column with closed chambers from the second internal column. Pump actuators in each closed chamber pump fluid through the channels from slot to slot.
Abstract:
A microfluidic mixing device comprises a main channel and a number of secondary channels extending from a portion of the main channel and entering another portion of the main channel. A number of actuators are located in the secondary channels to pump fluids through the secondary channels. A microfluidic mixing system comprises a microfluidic mixing device. The microfluidic mixing device comprises a main fluid mixing channel, a number of main channel actuators to pump fluid through the main fluid mixing channel, a number of secondary channels fluidly coupled to the main fluid mixing channel, and a number of secondary channel actuators to pump fluids through the secondary channels. The microfluidic mixing device also comprises a fluid source, and a control device to provide fluids from the fluid source to the microfluidic mixing device and activate the main channel actuators and secondary channel actuators.
Abstract:
A drop detection method comprises ejecting an ink drop that includes a fluorescent agent, illuminating the ink drop in flight with excitation light to excite the fluorescent agent, detecting fluorescence emitted by the drop in flight, having a longer wavelength than a wavelength of the excitation light, and, prior to such detecting, filtering out light having a shorter wavelength than the fluorescence wavelength; and a printer with drop detection assembly for performing the method.
Abstract:
A system includes a microchannel analysis region, a first fluid actuation device, a second fluid actuation device, a sensor, and a controller. The first fluid actuation device is at a first end of the microchannel analysis region. The second fluid actuation device is at a second end of the microchannel analysis region opposite to the first end. The sensor is within the microchannel analysis region between the first fluid actuation device and the second fluid actuation device. The sensor measures an impedance of a fluid within the microchannel analysis region. The controller activates the first fluid actuation device to generate a first pressure wave in the fluid and activates the second fluid actuation device to generate a second pressure wave in the fluid. The first pressure wave and the second pressure wave converge at the sensor.
Abstract:
A droplet PCR system is described herein. The droplet PCR system comprises a chamber having a heating surface, a droplet dispenser to dispense PCR-reagent-containing droplets into the chamber, a heater disposed onto the heating surface of the chamber to heat a layer of fluid adjacent the heating surface, and a controller to control the heater to produce a pulsed heat flux.
Abstract:
A microfluidic system may comprise a dispense head with multiple dispensers, each dispensing a different cell type, such as single pairs of individual target cells and individual sensor cells. Interaction between the cells may be observed based on, for example, fluorescence. Individual target cells may then be selected, based on observations, for use or for further investigation. As an example, target cells may be B-cells, and enhanced selection of B-cells aids more direct antibody discovery.
Abstract:
A method comprising receiving, at a microfluidic channel, a biologic sample including a cell and providing a magnetic field within the microfluidic channel using a first magnet, wherein the magnetic field attracts a first plurality of magnetic particles disposed within the microfluidic channel. The method further includes activating a first resistor disposed within the microfluidic channel to agitate a volume of fluid within the microfluidic channel, and in response, moving the first plurality of magnetic particles through the microfluidic channel to lyse the cell and to release cellular material from the cell.
Abstract:
In one example in accordance with the present disclosure, a fluid analysis system is described. The fluid analysis system includes an inlet channel to an analysis chamber. The analysis chamber is to receive a fluid sample to be analyzed. The fluid analysis system also includes a fluid branch having a fluidic junction along the inlet channel and a gas chamber to house a volume of trapped gas, the gas chamber being in fluid communication with the fluid branch. The fluid analysis system also includes a sealing fluid delivery system to fill the fluid branch with a sealing fluid and a heater adjacent the gas chamber to heat the gas chamber such that the trapped gas expands to push the sealing fluid into the inlet channel to seal the analysis chamber.