Abstract:
A delta-sigma modulator is configured to sense and convert an electromagnetic field into a digital signal. An exemplary delta-sigma modulator includes a sensor component, such as an LC resonator, that is configured to sense the electromagnetic field and generate an input analog signal, where the delta-sigma modulator is configured to convert the input analog signal to the digital signal. Delta-sigma modulator can include an analog-to-digital converter coupled to the sensor component that receives and converts the input analog signal to the digital signal. Delta-sigma modulator can further include a digital-to-analog converter (DAC) coupled to the resonator and the ADC, the DAC configured to receive the digital signal from the ADC and generate a feedback analog signal.
Abstract:
A timer circuit is provided comprising: a resistor; a programmable gain circuit coupled to amplify the reference level based upon a resistor and a selected gain; a detection circuit coupled to identify the amplified reference level based upon a resistor; a selection circuit configured to select the gain based at least in part upon the identified amplified reference level based upon a resistor; a comparator circuit configured to transition between providing a signal having a first value and providing a signal having a second value based at least in part upon comparisons of a reactive circuit element excitation level with the amplified reference level based upon a resistor and with a second reference level; and reactive circuit element excitation circuit configured to reverse excitation of the reactive circuit element in response to the comparator circuit transitioning between providing the signal having the first value and providing the signal having the second value.
Abstract:
This disclosure describes techniques and methodologies of using passive continuous time (CT) delay line for high-speed CT analog-to-digital converter (ADC) applications. In a continuous-time residual producing stage common to these CT ADCs, a proper delay between the analog input and DAC output is crucial. Specifically, using an inductor-capacitor (LC) lattice based delay element to enable high-performance CT pipeline ADC and CT delta-sigma (ΔΣ) ADC. The use of an LC lattice based delay element provides wide-band group delay for continuous-time signals with well-controlled impedance. This will be an essential circuit component to build a high-performance CT ADCs especially in architectures where the generation of a low-noise and low-distortion residual between the CT signal and its digitized version is needed. LC lattice based delay element enables noise-free, distortion-free wideband delay that is required for high speed continuous-time pipeline ADC and delta-sigma ADC.
Abstract:
A wireless charging network system is disclosed that includes wirelessly charged sensor nodes. The wireless network system can include a gateway node configured to aggregate data from sensor nodes within a coverage area of the gateway node. The gateway node is further configured to wirelessly transmit power to the sensor nodes using a beamformed signal, wherein the gateway node adjusts the beamformed signal to maximize wireless power transfer to sensor nodes within each sector of the coverage area. Location information can be used to adjust the beamformed signal. For example, in various embodiments, the gateway node includes a beamformer sector profile table that defines channel adaptive beam profiles for the beamformed signal for each sector of the coverage area. The gateway node can use location information to define the beam profiles.
Abstract:
Example embodiments of this disclosure can provide an apparatus, a system, and a method of correcting for charge lost from a sampling capacitor as a result of an analog to digital conversion being performed. In an embodiment, there is provided a method of operating an analog to digital converter comprising at least a first sampling capacitor used to sample an input signal, where the method can further comprise a correction step of modifying the voltage across the at least first sampling capacitor, the correction step being performed prior to commencing an acquire phase.
Abstract:
A system has a baseband gain stage to receive incoming in-phase and quadrature voltage signals and output in-phase and quadrature current signals, a mixer core arranged to receive the in-phase and quadrature current signals and output radio frequency signals, and a variable gain amplifier to receive the radio frequency signals and produce a broadband radio signal.
Abstract:
This disclosure describes techniques and methodologies of using passive continuous time (CT) delay line for high-speed CT analog-to-digital converter (ADC) applications. In a continuous-time residual producing stage common to these CT ADCs, a proper delay between the analog input and DAC output is crucial. Specifically, using an inductor-capacitor (LC) lattice based delay element to enable high-performance CT pipeline ADC and CT delta-sigma (ΔΣ) ADC. The use of an LC lattice based delay element provides wide-band group delay for continuous-time signals with well-controlled impedance. This will be an essential circuit component to build a high-performance CT ADCs especially in architectures where the generation of a low-noise and low-distortion residual between the CT signal and its digitized version is needed. LC lattice based delay element enables noise-free, distortion-free wideband delay that is required for high speed continuous-time pipeline ADC and delta-sigma ADC.
Abstract:
Various methods and systems are provided to control a probe moving towards fluid held in a container. The probe is moved towards the fluid to take a sample of the fluid in the container. To take a sample, probe is actuated to hit the fluid surface and to pass the fluid surface by a predetermined distance. Capacitive sensing which incorporates the probe itself is used to support an approach engine for controlling the motion of the probe. The approach engine determines the speed of the probe based on capacitance measurements, and in some cases based on position information of the probe. The approach engine ensures the probe hits the surface of the fluid in the container in order to take a sample while ensuring the probe does not hit the bottom of the container.
Abstract:
An inductor current emulation circuit for use with a switching converter in which regulating the output voltage includes comparing an output which varies with the difference between the output voltage and a reference voltage with a ‘ramp’ signal which emulates the current in the output inductor. A current sensing circuit produces an output which varies with the current in the switching element that is turned on during the ‘off’ time, an emulated current generator circuit produces the ‘ramp’ signal during both ‘off’ and ‘on’ times, a comparator circuit compares the ‘ramp’ signal with at least one threshold voltage which varies with the sensed current and toggles an output when the ‘ramp’ exceeds the thresholds, and a feedback circuit produces an output which adjusts the ‘ramp’ signal each time the comparator circuit output toggles until the ‘ramp’ signal no longer exceeds the threshold voltages.
Abstract:
Apparatus and methods for synchronizing phase-locked loops (PLLs) are provided. In certain implementations, a fractional-N synthesizer includes a PLL and a control circuit that controls a division value of the PLL. The control circuit includes an interpolator, a reset phase adjustment calculator, and a synchronization circuit. The interpolator can control a fractional portion of the PLL's division value. The reset phase adjustment calculator can include a counter for counting a number of cycles of the reference clock signal since initialization of the fractional-N synthesizer, and the reset phase adjustment calculator can generate a phase adjustment signal based on the count. The synchronization circuit can synchronize the PLL in response to a synchronization signal, and can correct for a synchronization phase error indicated by the phase adjustment signal.