Abstract:
A method of operating a memory device storing ECCs for corresponding data is provided. The method includes writing an extended ECC during a first program operation, the extended ECC including an ECC and an extended bit derived from the ECC. The method includes overwriting the extended ECC with a pre-determined state during a second program operation to indicate the second program operation. The method includes, setting the ECC to an initial ECC state before the first program operation; during the first program operation, computing the ECC, changing the ECC to the initial ECC state if the computed ECC equals the pre-determined state; and changing the extended bit to an initial value if the ECC equals the initial ECC state. The method includes reading an extended ECC including an extended bit and an ECC for corresponding data, and determining whether to enable ECC logic using the extended ECC.
Abstract:
A device includes a memory array storing data and error correcting codes ECCs corresponding to the data, and a multi-level buffer structure between the memory array and an input/output data path. The memory array includes a plurality of data lines for page mode operations. The buffer structure includes a first buffer having storage cells connected to respective data lines in the plurality of data lines for a page of data, a second buffer coupled to the storage cells in the first buffer for storing at least one page of data, and a third buffer coupled to the second buffer and to the input/output data path. The device includes logic coupled to the multi-level buffer to perform a logical process over pages of data during movement between the memory array and the input/output path through the multi-level buffer for at least one of page read and page write operations.
Abstract:
Various embodiments address various difficulties with source side sensing difficulties in various memory architectures, such as 3D vertical gate flash and multilevel cell memory. One such difficulty is that with source side sensing, the signal amplitude is significantly smaller than drain side sensing. Another such difficulty is the noise and reduced sensing margins associated with multilevel cell memory. In some embodiments the bit line is selectively discharged prior to applying the read bias arrangement.
Abstract:
A method for operating a memory includes receiving an input data set, saving a first level error correcting code ECC for the data in the input data set, saving second level ECCs for a plurality of second level groups of the data in the data set, storing the data set in the memory, and testing the data set to determine whether to use the first level ECC or the second level ECCs. The method includes, if the first level ECC is used, storing a flag enabling use of the first level ECC, else if the second level ECCs are used, storing a flag enabling use of the second level ECCs. The method includes storing the second level ECCs in a replacement ECC memory, and storing a pointer indicating locations of the second level ECCs in the replacement ECC memory.
Abstract:
A memory cell undergoing programming is determined as belonging to a particular one of a plurality of second threshold voltage ranges that divide a present threshold voltage range of the particular memory cell. Programming pulses are applied to program the particular memory cell to within the target threshold voltage range. At least one of a program voltage and a total duration of the programming pulses applied to the particular memory cell is varied, depending on the particular second threshold voltage range of the memory cell.
Abstract:
An operating method of a memory device comprises the following steps: a first page buffer receives a first input data to be programed into a first memory cell of the memory cells; a second page buffer receives a second input data to be programed into a second memory cell of the memory cells; and the first page buffer determines whether to shift a program verify (PV) voltage for the first input data according to the first and second input data.
Abstract:
Memory cells of a nonvolatile memory array are characterized by one of multiple threshold voltage ranges including at least an erased threshold voltage range and a programmed threshold voltage range. Responsive to an erase command to erase a group of memory cells of the nonvolatile memory array, a plurality of phases are performed, including at least a pre-program phase and an erase phase. The pre-program phase programs a first set of memory cells in the group having threshold voltages within the erased threshold voltage range, and does not program a second set of memory cells in the group having threshold voltages within the erased threshold voltage range in the group. By not programming the second set of memory cells, the pre-program phase is performed more quickly than if the second set of memory cells were programmed along with the first set of memory cells.
Abstract:
An array structure includes: a plurality of first signal lines and a plurality of sub-arrays. Each of the sub-array includes: a second signal line, a plurality of third signal lines, a plurality of fourth signal lines, a plurality of local decoders at each intersection of the first signal lines, the second signal line and the third signal lines; and a plurality of array cells at each intersection of the first signal lines, the third signal lines and the fourth signal lines. Respective control terminals of the local decoders are implemented by the first signal lines. In response to a selection status of the first signal lines and the second signal line, one of the local decoders selects one of the third signal lines.
Abstract:
An output circuit includes: an output switch including a gate terminal, a drain terminal coupled to an external I/O bus, and a well terminal; a well control circuit, having a well terminal coupled to the well terminal of the output switch, to maintain a well voltage of the output switch at a level not less than a greater of a first voltage and a second voltage; and a gate control circuit coupled to the gate terminal and a the drain terminal of the output switch and to the external I/O bus, and operable to turn off the output switch, to prevent current flow through the output switch from the external I/O bus when an operating voltage of the output circuit is not applied to the output switch, and a bus voltage from an external device is present on the external I/O bus.
Abstract:
An integrated circuit includes an output buffer and a control circuit. The output buffer has a signal input, a signal output, and a set of control inputs. The output buffer has an output buffer delay, and a driving strength adjustable in response to control signals applied to the set of control inputs. Alternatively, the output buffer delay is variable. The control circuit is connected to the set of control inputs of the output buffer. The control circuit uses first and second timing signals to generate the control signals, and can include a first delay circuit that generates the first timing signal with a first delay, and a second delay circuit that generates the second timing signal with a second delay that correlates with the output buffer delay.