Abstract:
A dielectric waveguide may be manufactured by forming a set of parallel channels in a planar sheet that has a lower dielectric constant value. The set of channels is then filled with a material having a higher dielectric constant value. The planar sheet is sliced into a plurality of strips that each contain one or more of the channels.
Abstract:
Signals on a dielectric waveguide are filtered to pass or block selected frequencies. A combined signal is received in the DWG, wherein the combined signal comprises at least a first frequency signal with a first wavelength and a second frequency signal with a second wavelength. The combined signal is split into a first portion and a second portion. The first portion of the combined signal is delayed by an amount of delay time to form a delayed first portion. The delayed first portion is joined with the received combined signal to form a filtered signal such that the first frequency signal is enhanced by constructive interference while the second frequency signal is diminished by destructive interference. A portion of the filtered signal is provided to a receiver, whereby the amplitude of the second frequency signal is attenuated in the filtered signal.
Abstract:
A system is provided for transmitting sub-terahertz electro-magnetic radio frequency (RF) signals using a dielectric waveguide (DWG) having a dielectric core member surrounded by dielectric cladding. An RF transmitter is coupled to an antenna located on a first substrate, in which the antenna is adjacent an edge of the substrate. The first substrate is mounted on a second substrate. A conductive reflector plate is formed on the top surface of the second substrate. An end of the DWG is mounted on the second substrate over the reflector plate such that an exposed face of the core member at the end of the DWG is adjacent the antenna. The core member at the end of DWG forms an angle of inclination with the second substrate in which the angle is in a range of approximately 10-30 degrees.
Abstract:
A dielectric waveguide (DWG) has a dielectric core member that has a length L and an oblong cross section. The core member has a first dielectric constant value. A dielectric cladding surrounds the dielectric core member; the cladding has a second dielectric constant value that is lower than the first dielectric constant. A conductive shield layer surrounds a portion of the dielectric cladding.
Abstract:
Described examples include a millimeter wave atomic clock apparatus, chip scale vapor cell, and fabrication method in which a low pressure dipolar molecule gas is provided in a sealed cavity with a conductive interior surface forming a waveguide. Non-conductive apertures provide electromagnetic entrance to, and exit from, the cavity. Conductive coupling structures formed on an outer surface of the vapor cell near the respective non-conductive apertures couple an electromagnetic field to the interior of the cavity for interrogating the vapor cell using a transceiver circuit at a frequency that maximizes the rotational transition absorption of the dipolar molecule gas in the cavity to provide a reference clock signal for atomic clock or other applications.
Abstract:
A communication cable includes a dielectric wave guide (DWG) that has a dielectric core member that has a first dielectric constant value and a cladding surrounding the dielectric core member that has a second dielectric constant value that is lower than the first dielectric constant. An RJ45 compatible connector is attached to a mating end of the DWG. The RJ45 connector is configured to retain a complimentary coupling mechanism on a mating end of a second DWG.
Abstract:
An electronic multi-output device has a substrate including a first pad, a second pad and a plurality of pins. A first chip with a first transistor has a first terminal on one chip surface and a second and third terminals on the opposite chip surface. The first chip with its first terminal is tied to the first pad. A second chip with a second transistor has a first terminal on one chip surface and a second and third terminals on the opposite chip surface. The second chip with its first terminal is tied to the second pad. The second terminals are connected by a discrete first metal clip and a second metal clip to respective substrate pins. A composite third chip has a third and a fourth transistor integrated so that the first terminals of the transistors are on one chip surface. The second terminals are merged into a common terminal. The patterned third terminals are on the opposite chip surface. The first terminals are vertically attached to the first and second metal clips, respectively. The common terminal is connected by a common clip to a substrate pin.
Abstract:
A dielectric wave guide (DWG) has a longitudinal dielectric core member. The core member has a first dielectric constant value. A cladding surrounds the dielectric core member and has a second dielectric constant value that is lower than the first dielectric constant. A portion of the DWG is configured as a corner having a radius. A conductive layer formed on an outer radius of the corner.
Abstract:
A metallic waveguide is mounted on a multilayer substrate. The metallic waveguide has an open end formed by a top, bottom and sides configured to receive a core member of a dielectric waveguide, and an opposite tapered end formed by declining the top of the metallic waveguide past the bottom of the metallic waveguide and down to contact the multilayer substrate. A pinnacle of the tapered end is coupled to the ground plane element, and the bottom side of the metallic waveguide is in contact with the multiplayer substrate and coupled to the microstrip line.
Abstract:
An encapsulated integrated circuit has transceiver circuitry operable to produce and/or receive a radio frequency (RF) signal, wherein bond pads on the IC die are coupled to the transceiver input/output (IO) circuitry. An antenna structure is coupled to the IO circuitry via the bond pads. Mold material encapsulates the IC die and the antenna structure, wherein the antenna structure is positioned so as to be approximately in alignment with a core of a dielectric waveguide positioned adjacent the encapsulated IC.