Abstract:
Semiconductor devices with underfill control features, and associated systems and methods. A representative system includes a substrate having a substrate surface and a cavity in the substrate surface, and a semiconductor device having a device surface facing toward the substrate surface. The semiconductor device further includes at least one circuit element electrically coupled to a conductive structure. The conductive structure is electrically connected to the substrate, and the semiconductor device further has a non-conductive material positioned adjacent the conductive structure and aligned with the cavity of the substrate. An underfill material is positioned between the substrate and the semiconductor device. In other embodiments, in addition to or in lieu of the con-conductive material, a first conductive structure is connected within the cavity, and a second conductive structure connected outside the cavity. The first conductive structure extends away from the device surface a greater distance than does the second conductive structure.
Abstract:
Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
Abstract:
Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
Abstract:
An interconnect assembly includes a bond pad and an interconnect structure configured to electrically couple an electronic structure to the bond pad. The interconnect structure physically contacts areas of the bond pad that are located outside of a probe contact area that may have been damaged during testing. Insulating material covers the probe contact area and defines openings spaced apart from the probe contact area. The interconnect structure extends through the openings to contact the bond pad.
Abstract:
Methods of manufacturing semiconductor devices and semiconductor devices with through-substrate vias (TSVs). One embodiment of a method of manufacturing a semiconductor device includes forming an opening through a dielectric structure and at least a portion of a semiconductor substrate, and forming a dielectric liner material having a first portion lining the opening and a second portion on an outer surface of the dielectric structure laterally outside of the opening. The method further includes removing the conductive material such that the second portion of the dielectric liner material is exposed, and forming a damascene conductive line in the second portion of the dielectric liner material that is electrically coupled to the TSV.
Abstract:
Pass-through 3D interconnects and microelectronic dies and systems of stacked dies that include such interconnects to disable electrical connections are disclosed herein. In one embodiment, a system of stacked dies includes a first microelectronic die having a backside, an interconnect extending through the first die to the backside, an integrated circuit electrically coupled to the interconnect, and a first electrostatic discharge (ESD) device electrically isolated from the interconnect. A second microelectronic die has a front side coupled to the backside of the first die, a metal contact at the front side electrically coupled to the interconnect, and a second ESD device electrically coupled to the metal contact. In another embodiment, the first die further includes a substrate carrying the integrated circuit and the first ESD device, and the interconnect is positioned in the substrate to disable an electrical connection between the first ESD device and the interconnect.
Abstract:
Semiconductor devices may include a semiconductor substrate comprising at least one of transistors and capacitors may be located at an active surface of the semiconductor substrate. An imperforate dielectric material may be located on the active surface, the imperforate dielectric material covering the at least one of transistors and the capacitors. Electrically conductive material in contact openings may be electrically connected to the at least one of transistors and capacitors and extend to a back side surface of the semiconductor substrate. Laterally extending conductive elements may extend over the back side surface of the semiconductor substrate and may be electrically connected to the conductive material in the contact openings. At least one laterally extending conductive element may be electrically connected to a first transistor or capacitor and may extend laterally underneath a second, different transistor or capacitor to which the laterally extending conductive element is not electrically connected.
Abstract:
Microelectronic devices with through-silicon vias and associated methods of manufacturing such devices. One embodiment of a method for forming tungsten through-silicon vias comprising forming an opening having a sidewall such that the opening extends through at least a portion of a substrate on which microelectronic structures have been formed. The method can further include lining the sidewall with a dielectric material, depositing tungsten on the dielectric material such that a cavity extends through at least a portion of the tungsten, and filling the cavity with a polysilicon material.
Abstract:
Semiconductor devices are described that have a metal interconnect extending vertically through a portion of the device to the back side of a semiconductor substrate. A top region of the metal interconnect is located vertically below a horizontal plane containing a metal routing layer. Method of fabricating the semiconductor device can include etching a via into a semiconductor substrate, filling the via with a metal material, forming a metal routing layer subsequent to filling the via, and removing a portion of a bottom of the semiconductor substrate to expose a bottom region of the metal filled via.
Abstract:
Methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming one or more openings in a front side of the semiconductor device and forming sacrificial plugs in the openings that partially fill the openings. The method further includes further filling the partially filled openings with a conductive material, where individual sacrificial plugs are generally between the conductive material and a substrate of the semiconductor device. The sacrificial plugs are exposed at a backside of the semiconductor device. Contact regions can be formed at the backside by removing the sacrificial plugs.