Abstract:
A threaded connection includes a first tube having a pin, the pin having pin threads, a circumferential concave outer pin surface, and a pin torque shoulder at a free end, the concave outer pin surface including a pin seal surface and a continuous extension from the pin seal surface to the pin torque shoulder. A second tube has a box, the box has box threads for interacting with the pin threads, a circumferential inner box surface and a box torque shoulder. The inner box surface has a radially inwardly extending box seal surface, the pin seal surface contacts the box seal surface to define a seal. The seal is spaced from the free end when the pin and box torque shoulders contact, the continuous extension continuing from the seal to the pin torque shoulder. A method for making-up a threaded connection is also provided.
Abstract:
The present invention provides a cold-rolled and annealed Dual-Phase steel sheet having strength from 980 to 1100 MPa and a breaking elongation greater than 9%. The composition includes the contents being expressed by weight: 0.055%≦C≦0.095%, 2%≦Mn≦2.6%, 0.005%≦Si≦0.35%, S≦0.005%, P≦0.050%, 0.1≦Al≦0.3%, 0.05%≦Mo≦0.25%, 0.2%≦Cr≦0.5%, Cr+2Mo≦0.6%, Ni≦0.1%, 0.010≦Nb≦0.040%, 0.010≦Ti≦0.050%, 0.0005≦B≦0.0025%, and 0.002%≦N≦0.007%. The remainder of the composition includes iron and inevitable impurities resulting from the smelting. A manufacturing method is also provided.
Abstract:
A method of butt-welding steel plates is provided. The method includes the steps of coating a first steel plate by dipping the first steel plate in a molten bath to obtain a first precoat upon the first steel plate. The first precoat includes a first intermetallic alloy layer and a first metal alloy layer, the first intermetallic alloy layer is topped by the first metal alloy layer. On a first face of the first steel plate, the first metal alloy layer is removed in a first area at a first periphery of the first steel plate, while at least part of the first intermetallic alloy layer in the first area remains. A second steel plate is coated by dipping the second steel plate in the molten bath or a further molten bath to obtain a second precoat upon the second steel plate. The second precoat includes a second intermetallic alloy layer and a second metal alloy layer, the second intermetallic alloy layer is topped by the second metal alloy layer. On a second face of the second steel plate, the second metal alloy layer is removed in a second area at a second periphery of the second metal plate. While at least part of the second intermetallic alloy layer in the second area remains. After removal of the first and second metal alloy layers, the first periphery of the first steel plate is butt-welded to the second periphery of the second steel plate to form a welded blank.
Abstract:
A vehicle door assembly comprises an inner panel integrally formed by upper and lower horizontal beams interconnected by front and rear upright beams, and an outer panel bonded to the inner panel. The frame portion comprises opposite front and rear U-shaped side frame members non-detachably attached to each other by upper and lower intermediate frame members so as to form a continuous perimeter. The side frame members are made of a first steel material and the intermediate frame members made of a second steel material, which is different from the first steel material. A method for manufacturing the inner panel comprises the steps: providing U-shaped sheets of the first steel material, providing top and bottom sheets of the second steel material, non-detachably connecting the U-shaped sheets to the top and bottom sheets so as to form a blank, and stamping the blank into the frame portion.
Abstract:
The invention relates to a twist-axle that includes a cross-beam member and two trailing arms, each trailing arm rigidly secured to the cross-beam member in one of two connection regions of the cross-beam member or formed integrally with and extending from one of the two connection regions. The cross-beam member is formed from a tubular blank and has a torsionally elastic central portion and two torsionally stiff connection regions. The cross-beam member has a wall thickness that varies longitudinally along the length of the cross-beam member from the torsionally elastic central portion to each of the torsionally stiff connection regions.
Abstract:
The present invention is directed at a method of production gain oriented Fe—Si steel sheet presenting an induction value at 800 A/m above 1.870 Tesla and a core power loss lower than 1.3 W/kg at a specific magnetic induction of 1.7 Tesla (T). The steel chemical composition comprises, in weight percentage: 2.8≦Si≦4, 0.20≦Cu≦0.6, 0.05≦Mn≦0.4, 0.001≦Al≦0.04, 0.025≦C≦0.05, 0.005≦N≦0.02, 0.005≦Sn≦0.03, S≦0.015 and optionally Ti, Nb, V or B in a cumulated amount below 0.02, the following relationships being respected: Mn/Sn≦40, 2.0≦C/N≦5.0, Al/N≦1.20, and the balance being Fe and other inevitable impurities.
Abstract:
A rolled steel sheet is provided. The rolled steel sheet has a mechanical strength greater than or equal to 600 MPa and an elongation at fracture that is greater than or equal to 20%. A a method for its fabrication is also provided. The chemical composition of the steel sheet includes 0.10≦C≦0.30%, 6.0≦Mn≦15.0%, 6.0≦Al≦15.0%, and optionally one or more elements selected from among: Si≦2.0%, Ti≦0.2%, V≦0.6% and Nb≦0.3%. The remainder of the composition includes iron and the unavoidable impurities resulting from processing. The ratio of the weight of manganese to the weight of aluminum is such that Mn Al > 1.0 . The microstructure of the sheet includes ferrite, austenite and up to 5% Kappa precipitates in area fraction.
Abstract:
A vehicle door assembly comprises an inner panel integrally formed by upper and lower horizontal beams interconnected by front and rear upright beams, and an outer panel bonded to the inner panel. The frame portion comprises opposite front and rear U-shaped side frame members non-detachably attached to each other by upper and lower intermediate frame members so as to form a continuous perimeter. The side frame members are made of a first steel material and the intermediate frame members made of a second steel material, which is different from the first steel material. A method for manufacturing the inner panel comprises the steps: providing U-shaped sheets of the first steel material, providing top and bottom sheets of the second steel material, non-detachably connecting the U-shaped sheets to the top and bottom sheets so as to form a blank, and stamping the blank into the frame portion.
Abstract:
A cold-rolled austenitic iron/carbon/manganese steel sheet is provided. The strength of which is greater than 950 MPa, the product (strength (in MPa)×elongation at fracture (in %)) of which is greater than 45000 and the chemical composition of which includes, the contents being expressed by weight 0.5%≦C≦0.7%, 17%≦Mn≦24%, Si≦3%, Al≦0.050%, S≦0.030%, P≦0.080% and N≦0.1%. A remainder of the composition includes iron and inevitable impurities resulting from the smelting. A recrystallized fraction of the structure of the steel is greater than 75%, a surface fraction of precipitated carbides of the steel is less than 1.5% and a mean grain size of the steel is less than 6 microns. A reinforcing element is also provided.
Abstract:
Nickel-base radiant tube includes straight and curved elbow tube sections. The straight tube section has constant inner and outer radii. The elbow tube section has a constant inner radius and variable outer radius. The inner diameter of the elbow tube section is equal the inner radius of the straight tube section. Mating end portion of the elbow tube section has an outer radius equal to the outer radius of the straight tube section. Method for making the radiant tube comprises the steps of positioning a mating end portion of the straight tube section adjacent to and aligned with the mating end portion of the elbow tube section so that end faces of the straight and elbow tube sections face each other to define a circumferentially extending weld groove, and butt welding the mating end portions of the straight and elbow tube sections together at the weld groove.