Abstract:
An electronic device may include leads, an IC having first and second bond pads, and an encapsulation material adjacent the leads and the IC so the leads extend to a bottom surface of the encapsulation material defining first contact pads. The electronic device may include bond wires between the first bond pads and corresponding ones of the leads, and conductors extending from corresponding ones of the second bond pads to the bottom surface of the encapsulation material defining second contact pads.
Abstract:
A reference current path carries a reference current. A first transistor is coupled to the reference current path. A second transistor is also coupled to the reference current path. The first and second transistors are connected in parallel to carry the reference current. The first transistor is biased by a first voltage (which is a bandgap voltage plus a threshold voltage). The second transistor is biased by a second voltage (which is a PTAT voltage plus a threshold voltage). The first and second transistors are thus biased by voltages having different and opposite temperature coefficients with a result that the temperature coefficients of the currents flowing in the first and second transistors are opposite and the reference current accordingly has a low temperature coefficient.
Abstract:
An electronic device may include first and second laterally spaced apart interconnect substrates defining a slotted opening, and a first IC in the slotted opening and electrically coupled to one or more of the first and second interconnect substrates. The electronic device may include a first other IC over the first IC and electrically coupled to one or more of the first and second interconnect substrates, and encapsulation material over the first and second interconnect substrates, the first IC, and the first other IC.
Abstract:
A driver circuit includes a high-side power transistor having a source-drain path coupled between a first node and a second node and a low-side power transistor having a source-drain path coupled between the second node and a third node. A high-side drive circuit, having an input configured to receive a drive signal, includes an output configured to drive a control terminal of said high-side power transistor. The high-side drive circuit is configured to operate as a capacitive driver. A low-side drive circuit, having an input configured to receive a complement drive signal, includes an output configured to drive a control terminal of said low-side power transistor. The low-side drive circuit is configured to operate as a level-shifting driver.
Abstract:
A current source circuit is configured to receive a reference current at the input circuit path of a current mirror circuit. The current mirror circuit mirrors the reference current and generates mirror currents at a number of output circuit paths. A corresponding number of control transistors are connected in series with the output circuit paths. Each control transistor is selectively actuated in response to a control signal. A decoder circuit is configured to receive a variable control signal and generate actuation signals in response thereto to selective actuate the control transistors to pass the mirror current to an output node. At the output node, the passed mirror currents are summed to generate a variable output current. The variable current is monotonically modulated in response to the variable control signal.
Abstract:
An electronic device may include leads, an IC having first and second bond pads, and an encapsulation material adjacent the leads and the IC so the leads extend to a bottom surface of the encapsulation material defining first contact pads. The electronic device may include bond wires between the first bond pads and corresponding ones of the leads, and conductors extending from corresponding ones of the second bond pads to the bottom surface of the encapsulation material defining second contact pads.
Abstract:
A switching circuit includes a first input stage having an input for receiving a first input signal, an output, and a power terminal for receiving an increasing analog current, a second input stage having an input for receiving a second input signal, an output, and a power terminal for receiving a decreasing analog current, and an output node coupled to the outputs of the first input stage and the second input stage for providing a switched output signal. An output stage is coupled between the first and second input stages and the output node. The first and second input stages are operational amplifiers.
Abstract:
Embodiments of the present invention provide a camera module and a method of manufacturing the same, the camera module comprising a sensor assembly, at least one semiconductor substrate, and a molding compound; wherein the sensor assembly comprises a semiconductor die, a sensor circuit disposed on the top surface of the semiconductor die, and a transparent cover coupled to the semiconductor die over the top surface of the semiconductor die; wherein each semiconductor substrate is disposed around the sensor assembly in a horizontal direction; and wherein the molding compound is filled between each semiconductor substrate and the sensor assembly.
Abstract:
Embodiments of the present disclosure relate to a leadless surface mount assembly package, an electronic device, and a method for forming a surface mount assembly package, which package comprising: a first lead; a second lead; a chip fixed on an upper surface of the first lead; a clip coupled to the second lead, a lower surface of the clip being fixed to an upper surface of the chip. The surface mount assembly package further comprises a molding compound for molding the first lead, the second lead, the chip, and the clip, wherein ends of the first lead and the second lead are only exposed from the molding compound, without outward extending from the molding compound. By using the embodiments of the present disclosure, costs can be saved and processing flow can be simplified, and a new-model leadless surface mount assembly package is obtained.
Abstract:
A method of operating a speaker system including a speaker coupled to an amplifier, and a dedicated digital speaker protection circuit includes turning on the amplifier in a mute mode, after a first delay period, issuing a play command to the amplifier to place the amplifier in a play mode, but without an input signal during a second delay period, and performing a speaker offset detection during the second delay period, wherein, if there is an offset, then the amplifier is forced back into the mute mode, and if there is no offset, then the amplifier is allowed to continue to operate in the play mode. The method also includes issuing a speaker protection control signal or command if an offset is detected.