Abstract:
A method of forming thin-film structure by oblique-angle deposition is provided. The method includes the steps of: evaporating target source in a chamber by an electron beam evaporation system, and introducing process gas into the chamber and adjusting tilt angle of the evaporation substrate and controlling temperature in the chamber during evaporation to form thin-film on a evaporation substrate by oblique-angle deposition, and then annealing the evaporation substrate to form a thin-film having porous nanorod microstructure.
Abstract:
An inflation type cervical vertebrae rehabilitation device includes at least one cervical vertebrae cell, a head cell connected to the at least one cervical vertebrae cell, an electric inflation portion and a control portion. The method includes a preparing step, a setting inflation processes step, an inflating step, and a completion step. One or more cervical vertebrae cells are inflatable and positioned between a support position and an operation position to support and rehabilitate the user's neck. The head cell is provided to support the user's head. So, the cervical vertebrae cells can support the user's head and neck with rehabilitation functions. The head cell is an auxiliary for support the user's head. It is easy to carry. This invention could be remote controlled. It contains the far infra-red heating function. In addition, there is a pose balance feature.
Abstract:
A package structure includes: a substrate having a first side and a second side opposite to the first side; a metal layer disposed over at least a portion of the second side of the substrate; a light-reflective layer disposed over the first side of the substrate; and a photonic device bonded to the light-reflective layer from the first side. A segment of the metal layer extends through the substrate from the first side to the second side, and a portion of the substrate is completely enclosed in a cross-sectional view by the metal layer. The package structure is free of a bonding wire over the second side of the substrate.
Abstract:
The present disclosure relates to high efficiency light emitting diode devices and methods for fabricating the same. In accordance with one or more embodiments, a light emitting diode device includes a substrate having one or more recessed features formed on a surface thereof and one or more omni-directional reflectors formed to overlie the one or more recessed features. A light emitting diode layer is formed on the surface of the substrate to overlie the omni-directional reflector. The one or more omni-directional reflectors are adapted to efficiently reflect light.
Abstract:
The present disclosure relates to methods for fabricating LEDs by patterning and etching an n-doped epitaxial layer to form regions of roughened surface of the n-doped layer and mesa structures adjacent to the roughened surface regions before depositing an active layer and the rest of the epitaxial layers on the mesa structures. The method includes growing epitaxial layers of an LED including an un-doped layer and an n-doped layer on a wafer of growth substrate. The method also includes patterning the n-doped layer to form a first region of the n-doped layer and a mesa region of the n-doped layer adjacent to the first region. The method further includes etching the first region of the n-doped layer to create a roughened surface. The method further includes growing additional epitaxial layers of the LED including an active layer and a p-doped layer on the mesa region of the n-doped layer.
Abstract:
A Light-Emitting Diode (LED) is formed on a sapphire substrate that is removed from the LED by grinding and then etching the sapphire substrate. The sapphire substrate is ground first to a first specified thickness using a single abrasive or multiple abrasives. The remaining sapphire substrate is removed by dry etching or wet etching.
Abstract:
The present disclosure involves a method of fabricating a light-emitting diode (LED) wafer. The method first determines a target surface morphology for the LED wafer. The target surface morphology yields a maximum light output for LEDs on the LED wafer. The LED wafer is etched to form a roughened wafer surface. Thereafter, using a laser scanning microscope, the method investigates an actual surface morphology of the LED wafer. Afterwards, if the actual surface morphology differs from the target surface morphology beyond an acceptable limit, the method repeats the etching step one or more times. The etching is repeated by adjusting one or more etching parameters.
Abstract:
The present disclosure provides one embodiment of a method for fabricating a light emitting diode (LED) package. The method includes forming a plurality of through silicon vias (TSVs) on a silicon substrate; depositing a dielectric layer over a first side and a second side of the silicon substrate and over sidewall surfaces of the TSVs; forming a metal layer patterned over the dielectric layer on the first side and the second side of the silicon substrate and further filling the TSVs; and forming a plurality of highly reflective bonding pads over the metal layer on the second side of the silicon substrate for LED bonding and wire bonding.
Abstract:
A seed layer for growing a group III-V semiconductor structure is embedded in a dielectric material on a carrier substrate. After the group III-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group III-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.
Abstract:
A nano-patterned substrate includes a plurality of nano-particles or nanopillars on an upper surface thereof. A ratio of height to diameter of each of the nano-particles or each of the nanopillars is either greater than or equal to 1. Particularly, a ratio of height to diameter of the nanopillars is greater than or equal to 5. Each of the nano-particles or each of the nanopillars has an arc-shaped top surface. When an epitaxial growth process is applied onto the nano-patterned substrate to form an epitaxial layer, the epitaxial layer has very low defect density. Thus, a production yield of fabricating the subsequent device can be improved.