摘要:
Methods and apparatus for processing a substrate are provided herein. In some embodiments, a method of processing a substrate may include providing a substrate having at least one of a defect or a contaminant disposed on or near a surface of the substrate; and selectively annealing a portion of the substrate with a laser beam in the presence of a process gas comprising hydrogen. The laser beam may be moved over the substrate or continuously, or in a stepwise fashion. The laser beam may be applied in a continuous wave or pulsed mode. The process gas may further comprise an inert gas, such as, at least one of helium, argon, or nitrogen. A layer of material may be subsequently deposited atop the annealed substrate.
摘要:
Embodiments of methods for depositing silicon germanium (SiGe) layers on a substrate are disclosed herein. In some embodiments, the method includes depositing a silicon germanium seed layer atop the substrate using a first precursor comprising silicon and chlorine; and depositing a silicon germanium bulk layer atop the silicon germanium seed layer using a second precursor comprising silicon and hydrogen. In some embodiments, the first silicon precursor gas may comprise at least one of dichlorosilane (H2SiCl2), trichlorosilane (HSiCl3), or silicon tetrachloride (SiCl4). In some embodiments, the second silicon precursor gas may comprise at least one of silane (SiH4), or disilane (Si2H6).
摘要:
Systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.
摘要:
In one embodiment, a method for forming a silicon-based material on a substrate having dielectric materials and source/drain regions thereon within a process chamber is provided which includes exposing the substrate to a first process gas comprising silane, methylsilane, a first etchant, and hydrogen gas to deposit a first silicon-containing layer thereon. The first silicon-containing layer may be selectively deposited on the source/drain regions of the substrate while the first silicon-containing layer may be etched away on the surface of the dielectric materials of the substrate. Subsequently, the process further provides exposing the substrate to a second process gas comprising dichlorosilane and a second etchant to deposit a second silicon-containing layer selectively over the surface of the first silicon-containing layer on the substrate.
摘要:
A method for forming an ultra shallow junction on a substrate is provided. In certain embodiments a method of forming an ultra shallow junction on a substrate is provided. The substrate is placed into a process chamber. A silicon carbon layer is deposited on the substrate. The silicon carbon layer is exposed to a dopant. The substrate is heated to a temperature greater than 950° C. so as to cause substantial annealing of the dopant within the silicon carbon layer. In certain embodiments the substrate is heated to a temperature between about 1000° C. and about 1100°. In certain embodiments the substrate is heated to a temperature between about 1030° C. and 1050° C. In certain embodiments, a structure having an abrupt p-n junction is provided.
摘要:
Methods, systems and apparatus are disclosed for adjusting the temperature of at least a portion of the surface of a reaction chamber during a film formation process to control film properties. More than one portion of the chamber surface may be temperature-modulated.
摘要:
In one embodiment, a method for fabricating a silicon-based device on a substrate surface is provided which includes depositing a first silicon-containing layer by exposing the substrate surface to a first process gas comprising Cl2SiH2, a germanium source, a first etchant and a carrier gas and depositing a second silicon-containing layer by exposing the first silicon-containing layer to a second process gas comprising SiH4 and a second etchant. In another embodiment, a method for depositing a silicon-containing material on a substrate surface is provided which includes depositing a first silicon-containing layer on the substrate surface with a first germanium concentration of about 15 at % or more. The method further provides depositing on the first silicon-containing layer a second silicon-containing layer wherein a second germanium concentration of about 15 at % or less, exposing the substrate surface to air to form a native oxide layer, removing the native oxide layer to expose the second silicon-containing layer, and depositing a third silicon-containing layer on the second silicon-containing layer. In another embodiment, a method for depositing a silicon-containing material on a substrate surface is provided which includes depositing epitaxially a first silicon-containing layer on the substrate surface with a first lattice strain, and depositing epitaxially on the first silicon-containing layer a second silicon-containing layer with a second lattice strain greater than the first lattice strain.
摘要:
A method for depositing doped polycrystalline or amorphous silicon film. The method includes placing a substrate onto a susceptor. The susceptor includes a body having a resistive heater therein and a thermocouple in physical contact with the resistive heater. The susceptor is located in the process chamber such that the process chamber has a top portion above the susceptor and a bottom portion below the susceptor. The method further includes heating the susceptor. The method further includes providing a process gas mix into the process chamber through a shower head located on the susceptor. The process gas mix includes a silicon source gas, a dopant gas, and a carrier gas. The carrier gas includes nitrogen. The method further includes forming the doped silicon film from the silicon source gas.
摘要:
Apparatus for use with multi-zonal heating sources are provided. In some embodiments, a substrate support may have a pocket disposed in a surface of the substrate support and a lip disposed about the pocket to receive an edge of a substrate and to support the substrate over the pocket such that a gap is defined between a pocket surface and a backside surface of the substrate when the substrate is disposed on the lip; a plurality of features to operate in combination with a plurality of heating zones provided by a multi-zonal heating source to provide a desired temperature profile on a frontside surface of a substrate when the substrate is disposed on the lip, and wherein the plurality of features are alternatingly disposed above and below a baseline surface profile of the pocket surface in a radial direction from a central axis of the substrate support.
摘要:
Methods and apparatus for providing constant emissivity of the backside of susceptors are described. Provided is a method comprising: providing a susceptor in a deposition chamber, the susceptor comprising a susceptor plate and a layer comprising an oxide, a nitride, an oxynitride, or combinations thereof, the layer being stable in the presence of the reactive process gases; and locating the wafer on a support surface of the susceptor plate. The method can further comprise selectively depositing an epitaxial layer or a non-epitaxial layer on a surface of the wafer. The method can also further comprise selectively etching to maintain the oxide, nitride, oxynitride, or combinations thereof layer.