Abstract:
Methods for depositing a material atop a substrate are provided herein. In some embodiments, a method of depositing a material atop a substrate may include exposing a substrate to a silicon containing gas and a reducing gas; increasing a flow rate of the silicon containing gas while decreasing a flow rate of the reducing gas to form a first layer; and depositing a second layer atop the first layer.
Abstract:
Methods and apparatus for hot wire chemical vapor deposition (HWCVD) are provided herein. In some embodiments, an inline HWCVD tool may include a linear conveyor for moving a substrate through the linear process tool; and a multiplicity of HWCVD sources, the multiplicity of HWCVD sources being positioned parallel to and spaced apart from the linear conveyor and configured to deposit material on the surface of the substrate as the substrate moves along the linear conveyor; wherein the substrate is coated by the multiplicity of HWCVD sources without breaking vacuum. In some embodiments, methods of coating substrates may include depositing a first material from an HWCVD source on a substrate moving through a first deposition chamber; moving the substrate from the first deposition chamber to a second deposition chamber; and depositing a second material from a second HWCVD source on the substrate moving through the second deposition chamber.
Abstract:
A method and apparatus are provided for formation of a composite material on a substrate. The composite material includes carbon nanotubes and/or nanofibers, and composite intrinsic and doped silicon structures. In one embodiment, the substrates are in the form of an elongated sheet or web of material, and the apparatus includes supply and take-up rolls to support the web prior to and after formation of the composite materials. The web is guided through various processing chambers to form the composite materials. In another embodiment, the large scale substrates comprise discrete substrates. The discrete substrates are supported on a conveyor system or, alternatively, are handled by robots that route the substrates through the processing chambers to form the composite materials on the substrates. The composite materials are useful in the formation of energy storage devices and/or photovoltaic devices.
Abstract:
Processes for making a high K (dielectric constant) film using an ultra-high purity hafnium containing organometallic compound are disclosed. Also described are devices incorporating high K films made with high purity hafnium containing organometallic compounds.
Abstract:
Methods and apparatus for forming energy storage devices are provided. In one embodiment a method of producing an energy storage device is provided. The method comprises positioning an anodic current collector into a processing region, depositing one or more three-dimensional electrodes separated by a finite distance on a surface of the anodic current collector such that portions of the surface of the anodic current collector remain exposed, depositing a conformal polymeric layer over the anodic current collector and the one or more three-dimensional electrodes using iCVD techniques comprising flowing a gaseous monomer into the processing region, flowing a gaseous initiator into the processing region through a heated filament to form a reactive gas mixture of the gaseous monomer and the gaseous initiator, wherein the heated filament is heated to a temperature between about 300° C. and about 600° C., and depositing a conformal layer of cathodic material over the conformal polymeric layer.
Abstract:
Provided are atomic layer deposition apparatus and methods including a gas distribution plate and at least one laser source emitting a laser beam adjacent the gas distribution plate to activate gaseous species from the gas distribution plate. Also provided are gas distribution plates with elongate gas injector ports where the at least one laser beam is directed along the length of the elongate gas injectors.
Abstract:
A substrate processing system for processing multiple substrates is provided and generally includes at least one processing platform and at least one staging platform. Each substrate is positioned on a substrate carrier disposed on a substrate support assembly. Multiple substrate carriers, each is configured to carry a substrate thereon, are positioned on the surface of the substrate support assembly. The processing platform and the staging platform, each includes a separate substrate support assembly, which can be rotated by a separate rotary track mechanism. Each rotary track mechanism is capable of supporting the substrate support assembly and continuously rotating multiple substrates carried by the substrate carriers and disposed on the substrate support assembly. Each substrate is thus processed through at least one shower head station and at least one buffer station, which are positioned at a distance above the rotary track mechanism of the processing platform. Each substrate can be transferred between the processing platform and the staging platform and in and out the substrate processing system.
Abstract:
In one embodiment, a method for depositing a capping layer on a dielectric layer in a process chamber is provided which includes depositing the dielectric layer on a substrate surface, depositing a silicon-containing layer by an ALD process, comprising alternately pulsing a silicon precursor and an oxidizing gas into the process chamber, and exposing the silicon-containing layer to a nitridation process. In another embodiment, a method for depositing a silicon-containing capping layer on a dielectric layer in a process chamber by an ALD process is provided which includes flowing a silicon precursor into the process chamber, purging the process chamber with a purge gas, flowing an oxidizing gas comprising water formed by flowing a H2 gas and an oxygen-containing gas through a water vapor generator, and purging the process chamber with the purge gas.
Abstract:
The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.
Abstract:
A capacitor structure comprising a bottom electrode, an insulator and a top electrode, and method for manufacturing the same. The bottom and top electrodes preferably include a metal portion and a conducting oxygen-containing metal portion. In one embodiment, a layer of ruthenium is deposited to form a portion of the bottom electrode. Prior to deposition of the insulator, the ruthenium is annealed in an oxygen-containing environment. The insulator is then deposited on the oxygen-containing ruthenium layer. Formation of the top electrode includes depositing a first metal on the insulator, annealing the first metal and then depositing a second metal. The first and second metals may be ruthenium.