Abstract:
The present invention provides gas discharge laser systems capable of reliable long-term operation in a production line capacity at repetition rates in the range of 6,000 to 10,0000 pulses power second. Preferred embodiments are configured as KrF, ArF and F2 lasers used for light sources for integrated circuit lithography. Improvements include a modified high voltage power supply capable for charging an initial capacitor of a magnetic compression pulse power system to precise target voltages 6,000 to 10,0000 times per second and a feedback control for monitoring pulse energy and determining the target voltages on a pulse-by-pulse basis. Several techniques are disclosed for removing discharge created debris from the discharge region between the laser electrodes during the intervals between discharges. In one embodiment the width of the discharge region is reduced from about 3 mm to about 1 mm so that a gas circulation system designed for 4,000 Hz operation could be utilized for 10,000 Hz operation. In other embodiments the gas flow between the electrodes is increased sufficiently to permit 10,000 Hz operation with a discharge region width of 3 mm. To provide these substantial increased gas flow rates, Applicants have disclosed preferred embodiments utilize tangential forms of the prior art but with improved and more powerful motors and novel bearing designs. New bearing designs include both ceramic bearings and magnetic bearings. In other embodiments, some or all of the gas circulation power is provided with a blower located outside the laser chamber. The outside blower can be located in the laser cabinet or in separate location.
Abstract:
The present invention provides long life optics for a modular, high repetition rate, ultraviolet gas discharge laser systems producing a high repetition rate high power output beam. The invention includes solutions to a surface damage problem discovered by Applicants on CaF2 optics located in high pulse intensity sections of the output beam of prototype laser systems. Embodiments include an enclosed and purged beam path with beam pointing control for beam delivery of billions of output laser pulses. Optical components and modules described herein are capable of controlling ultraviolet laser output pulses with wavelength less than 200 nm with average output pulse intensities greater than 1.75×106 Watts/cm2 and with peak intensity or greater 3.5×106 Watts/cm2 for many billions of pulses as compared to prior art components and modules which failed after only a few minutes in these pulse intensities. Techniques and components are disclosed for minimizing the potential for optical damage and for reducing the pulse energy density to less than 100×10−6 J/cm3. Important improvements described in this specification have been grouped into the following subject matter categories: (1) Solution to CaF2 surface damage discovered by Applicants, (2) description of a high power ArF MOPA laser system, (3) description of beam delivery units, (4) polarization considerations (5) a high speed water-cooled auto shutter energy detector module and (6) other improvements.
Abstract translation:本发明提供了用于产生高重复率高功率输出光束的模块化高重复率紫外线气体放电激光器系统的长寿命光学器件。 本发明包括由申请人发现的位于原型激光系统的输出光束的高脉冲强度部分中的CaF 2光学器件的表面损伤问题的解决方案。 实施例包括用于束传送数十亿个输出激光脉冲的光束指向控制的封闭和清除的光束路径。 本文所述的光学部件和模块能够控制波长小于200nm的紫外激光输出脉冲,平均输出脉冲强度大于1.75×6 /瓦/ cm 2,并且与 与在这些脉冲强度中仅仅几分钟之后失效的现有技术部件和模块相比,数十亿个脉冲的峰值强度或更大的3.5×10 6 / cm 2 / SUP。 公开了用于最小化光学损伤的可能性和将脉冲能量密度降低到小于100×10 -6 / cm 3的技术和部件。 本说明书中描述的重要改进已分为以下主题类别:(1)由申请人发现的CaF 2 2表面损伤的解决方案,(2)高功率ArF MOPA激光系统的描述( 3)光束传输单元的描述,(4)偏振考虑(5)高速水冷自动快门能量检测器模块和(6)其他改进。
Abstract:
The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses at 2000 Hz with a full width half, maximum bandwidth of about 0.6 pm or less. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Improvements in the laser chamber permitting the higher pulse rates and improved bandwidth performance include a single upstream preionizer tube and a high efficiency chamber. The chamber is designed for operation at lower fluorine concentration. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control. These improvements include an increased capacity high voltage power supply with a voltage bleed-down circuit for precise voltage trimming, an improved commutation module that generates a high voltage pulse from the capacitors charged by the high voltage power supply and amplifies the pulse voltage 23 times with a very fast voltage transformer having a secondary winding consisting of a single four-segment stainless steel rod. A novel design for the compression head saturable inductor greatly reduces the quantity of transformer oil required and virtually eliminates the possibility of oil leakage which in the past has posed a hazard.
Abstract:
A tangential fan and cutoff assembly for recirculating a lasing gas mixture has blade members, which vary in circumferential position stepwise from end to end, and/or a tapered anode assembly. The number of blade members can be constant or variable between ends. The circumferential position of blade members can shift monotonically or reversibly between ends. Blade members are stiffened by optimally selecting the number and placement of hub members to control the natural vibration frequency of the fan. Methods of forming tangential fans include casting, and machining from a solid block. Monolithic structures can be joined, typically by electron-beam welding. Casting, welding, and machining processes introduce no additional contaminants. Tangential fans produced have mechanical rigidity, accurate tolerances, and low contaminant concentrations. Blade members can be formed into air foil shapes.
Abstract:
The present invention provides a modular high repetition rate ultraviolet gas discharge laser light source for a production line machine. The system includes an enclosed and purged beam path with beam pointing control for delivery the laser beam to a desired location such as the entrance port of the production line machine. In preferred embodiments, the production line machine is a lithography machine and two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. This MOPA system is capable of output pulse energies approximately double the comparable single chamber laser system with greatly improved beam quality. A pulse stretcher more than doubles the output pulse length resulting in a reduction in pulse power (mJ/ns) as compared to prior art laser systems. This preferred embodiment is capable of providing illumination at a lithography system wafer plane which is approximately constant throughout the operating life of the lithography system, despite substantial degradation of optical components.
Abstract:
A trussed cross-flow blower comprising truss elements on the inside of a cylindrically-shaped cross-flow blower element form at least three trusses which provide rigidity to the blower element. Preferably three trusses are provided, and they are located at radial 120.degree. spacings.