Abstract:
The inventive method comprises chemically-mechanically polishing a substrate with an inventive polishing composition comprising a liquid carrier and abrasive particles that have been treated with a compound.
Abstract:
Methods for fabricating a chemical-mechanical polishing composition include growing colloidal silica abrasive particles in a liquid including an aminosilane compound such that the aminosilane compound becomes incorporated in the abrasive particles. A dispersion including such colloidal silica abrasive particles may be further processed to obtain a chemical-mechanical polishing composition including colloidal silica particles having the aminosilane compound incorporated therein.
Abstract:
The inventive method comprises chemically-mechanically polishing a substrate with an inventive polishing composition comprising a liquid carrier and abrasive particles that have been treated with a compound.
Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, an amine compound in solution in the liquid carrier, and an iron containing accelerator. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, and a polycationic amine compound in solution in the liquid carrier. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
Abstract:
A chemical-mechanical polishing composition includes colloidal silica abrasive particles having a chemical compound incorporated therein. The chemical compound may include a nitrogen-containing compound such as an aminosilane or a phosphorus-containing compound. Methods for employing such compositions include applying the composition to a semiconductor substrate to remove at least a portion of a layer.
Abstract:
A chemical-mechanical polishing composition includes colloidal silica abrasive particles dispersed in a liquid carrier. The colloidal silica abrasive particles include a nitrogen-containing or phosphorus-containing compound incorporated therein such that the particles have a positive charge. The composition may be used to polish a substrate including a silicon oxygen material such as TEOS.
Abstract:
A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier and colloidal silica abrasive particles dispersed in the liquid carrier. The colloidal silica abrasive particles have a permanent positive charge of at least 6 mV. About 30 percent or more of the colloidal silica abrasive particles include three or more aggregated primary particles.
Abstract:
The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, an ionic polymer of formula I: wherein X1 and X2, Z1 and Z2, R2, R3, and R4, and n are as defined herein, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
Abstract:
The invention provides a chemical-mechanical polishing composition containing a ceria abrasive and a polymer of formula I: wherein X1 and X2, Y1 and Y2, Z1 and Z2, R1, R2, R3, and R4, and m are as defined herein, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.