Abstract:
For certain mixed mode resins having anionic character, a ligand is joined to a solid support via a linkage that includes a mercapto-, ether- or amino-containing moiety. A suitable ligand comprises an aromatic group, a heteroaromatic group, or a heterocyclic group, optionally fused, that is sulfate-, sulfonate-, phosphonate- or phosphate-substituted and that is linked to such a moiety. These resins possess an anionic character under conditions prescribed for their use. Separation of a biological substance, such as a peptide or protein, can be accomplished with a resin of this type via a change in the pH of eluants, thereby effecting adsorption and desorption.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) physically linked to a transfection agent for use in embolization gene therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions., using the injectable compositions.
Abstract:
The present invention provides small, dense mineral oxide solid supports or microbeads, comprising dense microporous mineral oxides matrices in which a skin of polymers is rooted, and their use in downstream processing, especially for fluidized bed purification of bioparticles or high molecular weight macromolecules.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, hydrophilic, non-toxic and substantially spherical microspheres microspheres and a biocompatible carrier for use in dermal augmentation. The present invention further relates to methods of dermal augmentation, particularly for the treatment of skin contour deficiencies, using the injectable compositions.
Abstract:
Novel sorbents and methods for removing small hydrophobic and amphophilic molecules from biological fluids were disclosed. The methods and materials were particularly useful for removing viral inactivating agents from blood and blood fractions. The novel sorbents comprise a porous mineral oxide matrix having its interior porous volume substantially filled with a crosslinked hydrophobic polymer network.
Abstract:
Tridimensional cross-linked random copolymers, insoluble in water, containing in copolymerized form: (a) 25% to 98% by weight of N-[tris(hydroxymethyl)methyl]acrylamide or N-[tris(hydroxymethyl)methyl]methacrylamide, or a mixture of these two compounds. (b) 2% to 50% by weight of one or more monomers containing two or several polymerizable ethylenic double bonds and free from anionic or cationic functional groups, and (c) 0.1% to 50% by weight of one or more monomers containing a polymerizable ethylenic double bond and one or more mono- or di-substituted amino, pyrimidinyl, guanidyl, purinyl, quaternary ammonium, SO.sub.3 H or SO.sub.3 M groups, M being an alkali metal. These copolymers are utilizable, in the form of aqueous gels, as ion exchangers.
Abstract:
Water-insoluble, tridimensional cross-linked random copolymers, which contain in copolymerized form:(a) 25% to 98% by weight of N-[tris(hydroxymethyl)methyl]acrylamide or N-[tris(hydroxymethyl)methyl]methacrylamide or a mixture of these two compounds;(b) 2% to 50% by weight of one or more monomers having several polymerizable ethylenic double bonds and one or more hydroxy groups, and free from NH.sub.2 or COOH groups; and(c) 0% to 50% by weight of one or more monomers having a polymerizable ethylenic double bond and one or more amino or carboxy groups. These copolymers may be used, in the form of aqueous gels, as supports in techniques of separation such as gell permeation chromatography and in techniques of immobilization of natural substances.
Abstract:
A process for preparing plates of a new gel polymer, said plates being adapted to the electrophoresis separation of the seric or plasmatic lipoproteins under a stepped gradient. The gel polymers are prepared by radical polymerization of N-methylol-acrylamide and of a bifunctional allylic or acrylic compound causing cross-linking to yield a tridimensional configuration polymer. The polymerization may optionally be catalyzed by peroxides and/or ultraviolet radiation. Anionic polysaccharides containing only COOH groups may be added to assist migration of lipoproteins in the gel.
Abstract:
The invention relates to a method for immobilizing nucleic ligands including at least one reactive amine function, by grafting on an activated solid substrate, including a step of coupling said nucleic acids on said activated solid substrate having a pH of less than 6.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.