Abstract:
Circuit fabrication methods are provided which include, for example: providing one or more gate structures disposed over a substrate structure, the substrate structure including a first region and a second region; forming a plurality of U-shaped cavities extending into the substrate structure in the first region and the second region thereof, where at least one first cavity of the plurality of U-shaped cavities is disposed adjacent in one gate structure in the first region; and expanding the at least one first cavity further into the substrate structure to at least partially undercut the one gate structure, without expanding at least one second cavity of the plurality of U-shaped cavities, where forming the plurality of U-shaped cavities facilitates fabricating the circuit structure. In one embodiment, the circuit structure includes first and second transistors, having different device architectures, the first transistor having a higher mobility characteristic than the second transistor.
Abstract:
Circuit fabrication methods are provided which include, for example: providing the circuit structure with at least one gate structure extending over a first region and a second region of a substrate structure, the at least one gate structure including a capping layer; and modifying an etch property of at least a portion of the capping layer of the at least one gate structure, where the modified etch property inhibits etching of the at least one gate structure during a first etch process facilitating fabrication of at least one first transistor in the first region and inhibits etching of the at least one gate structure during a second etch process facilitating fabrication of at least one second transistor in the second region.
Abstract:
A method for etching FinFET spacers by inserting a Si recess step directly after the traditional spacer ME step and the resulting device are provided. Embodiments include forming a gate on a substrate having a silicon fin, the gate having a nitride cap on an upper surface thereof and an oxide cap on an upper surface of the nitride cap; forming a dielectric layer over the silicon fin and the gate; removing the dielectric layer from an upper surface of the oxide cap and an upper surface of the silicon fin; recessing the silicon fin; and removing the dielectric layer from side surfaces of the silicon fin and the remaining silicon fin.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to scaled memory structures with middle of the line cuts and methods of manufacture The structure comprises: a plurality of fin structures formed on a substrate; a plurality of gate structures spanning over adjacent fin structures; a cut in adjacent epitaxial source/drain regions; and a cut in contact material formed adjacent to the plurality of gate structures, which provides separate contacts.
Abstract:
The use of two different materials for shallow trench isolation and deep structural trenches with a dielectric material therein (e.g., flowable oxide and a HARP oxide, respectively) causes non-uniform heights of exposed portions of raised semiconductor structures for non-planar semiconductor devices, due to the different etch rates of the materials. Non-uniform openings adjacent the exposed portions of the raised structures from recessing the isolation and dielectric materials are filled with additional dielectric material to create a uniform top layer of one material (the dielectric material), which can then be uniformly recessed to expose uniform portions of the raised structures.
Abstract:
A semiconductor structure with mixed n-type and p-type non-planar transistors includes a residual overlapping mask bump on one or more of the dummy gates. A dielectric layer is created over the structure having a top surface above the residual bump, for example, using a blanket deposition and chemical-mechanical underpolish (i.e., stopping before exposing the gate cap). The residual bump is then transformed into a same material as the dielectric, either in its entirety and then removing the combined dielectric, or by removing the dielectric first and partly removing the residual bump, the remainder of which is then transformed and the dielectric removed. In either case, the structure is planarized for further processing.
Abstract:
Fin-type transistor fabrication methods and structures are provided having extended embedded stress elements. The methods include, for example: providing a gate structure extending over a fin extending above a substrate; using isotropic etching and anisotropic etching to form an extended cavity within the fin, where the extended cavity in part undercuts the gate structure, and where the using of the isotropic etching and the anisotropic etching deepens the extended cavity into the fin below the undercut gate structure; and forming an embedded stress element at least partially within the extended cavity, including below the gate structure.
Abstract:
An intermediate semiconductor structure of a FinFET device in fabrication includes a substrate, a plurality of fin structures coupled to the substrate and a dummy gate disposed perpendicularly over the fin structures. A portion of the dummy gate is removed between the fin structures to create one or more vias and the one or more vias are filled with a dielectric. The dummy gate is then replaced with a metal gate formed around the dielectric-filled vias.