Abstract:
Devices and methods of fabricating integrated circuit devices for increasing performance through gate cut last processes are provided. One method includes, for instance: obtaining an intermediate semiconductor device having a substrate including a plurality of fins, an STI layer, an oxide layer, and a gate material over the oxide layer, the fins extending into the gate material; removing the gate material and the oxide layer; depositing a high k material on a top surface of the STI layer, surrounding the fins; depositing a gate stack over the high k material; filling the top of the device with a gate contact metal; etching a portion of the gate contact metal, the metal gate stack, and the high k material; and filling the portion with an inter-layer dielectric. Also disclosed is an intermediate device formed by the method.
Abstract:
Transistor structures and methods of fabricating transistor structures are provided. The methods include: fabricating a transistor structure at least partially within a substrate, the fabricating including: providing a cavity within the substrate; and forming a first portion and a second portion of the transistor structure at least partially within the cavity, the first portion being disposed at least partially between the substrate and the second portion, where the first portion inhibits diffusion of material from the second portion into the substrate. In one embodiment, the transistor structure is a field-effect transistor structure, and the first portion and the second portion include one of a source region or a drain region of the field-effect transistor structure. In another embodiment, the transistor structure is a bipolar junction transistor structure.
Abstract:
Methods for preparing a FinFET device with a protection diode formed prior to M1 formation and resulting devices are disclosed. Embodiments include forming plural fins on a substrate, with a STI region between adjacent fins; forming a dummy gate stack over and perpendicular to the fins, the gate stack including a dummy gate over a dummy gate insulating layer; forming sidewall spacers on opposite sides of the dummy gate stack; forming source/drain regions at opposite sides of the dummy gate stack; forming an ILD over the STI regions between fins; removing the dummy gate stack forming a gate cavity; forming a gate dielectric in the gate cavity; removing the gate dielectric from the gate cavity in a protection diode area, exposing an underlying fin; implanting a dopant into the exposed fin; and forming a RMG in the gate cavity, wherein a protection diode is formed in the protection diode area.
Abstract:
A method of forming a FinFET fin with low-doped and a highly-doped active portions and/or a FinFET fin having tapered sidewalls for Vt tuning and multi-Vt schemes and the resulting device are provided. Embodiments include forming an Si fin, the Si fin having a top active portion and a bottom active portion; forming a hard mask on a top surface of the Si fin; forming an oxide layer on opposite sides of the Si fin; implanting a dopant into the Si fin; recessing the oxide layer to reveal the active top portion of the Si fin; etching the top active portion of the Si fin to form vertical sidewalls; forming a nitride spacer covering each vertical sidewall; recessing the recessed oxide layer to reveal the active bottom portion of the Si fin; and tapering the active bottom portion of the Si fin.
Abstract:
Methods for producing independent-gate FinFETs with improved channel mobility and the resulting devices are disclosed. Embodiments may include forming an independent-gate fin field-effect transistor (FinFET) above a substrate; and forming stress within the fin between two independent gates of the independent-gate FinFET.
Abstract:
A method of fabricating a raised fin structure including a raised contact structure is provided. The method may include: providing a base fin structure; providing at least one ancillary fin structure, the at least one ancillary fin structure contacting the base fin structure at a side of the base fin structure; growing a material over the base fin structure to form the raised fin structure; and, growing the material over the at least one ancillary fin structure, wherein the at least one ancillary fin structure contacting the base fin structure increases a volume of material grown over the base fin structure near the contact between the base fin structure and the at least one ancillary fin structure to form the raised contact structure.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to fin structures with single diffusion break facet improvement using an epitaxial insulator and methods of manufacture. The structure includes: a plurality of fin structures; an insulator material filling a cut between adjacent fin structures of the plurality of fin structures; a metal material (e.g., rare earth oxide or SrTiO3) at least partially lining the cut; and an epitaxial source region or epitaxial drain region in at least one of the plurality of fin structures and adjacent to the metal material.
Abstract:
A method of making a semiconductor structure is provided including providing a plurality of fins on a semiconductor substrate; depositing a layer containing silicon dioxide on the plurality of fins and on a surface of the semiconductor substrate; depositing a photoresist layer on one or more but less than all of the plurality of fins; etching the layer of silicon dioxide off of one or more of the plurality of fins on which the photoresist layer had not been deposited; stripping the photoresist layer; depositing a layer of pure boron on one or more of the plurality of fins on which a photoresist had not been deposited; and depositing a silicon nitride liner step on the plurality of fins. A partial semiconductor device fabricated by said method is also provided.
Abstract:
A method of controlling the facet height of raised source/drain epi structures using multiple spacers, and the resulting device are provided. Embodiments include providing a gate structure on a SOI layer; forming a first pair of spacers on the SOI layer adjacent to and on opposite sides of the gate structure; forming a second pair of spacers on an upper surface of the first pair of spacers adjacent to and on the opposite sides of the gate structure; and forming a pair of faceted raised source/drain structures on the SOI, each of the faceted source/drain structures faceted at the upper surface of the first pair of spacers, wherein the second pair of spacers is more selective to epitaxial growth than the first pair of spacers.
Abstract:
A method can include epitaxially growing epitaxial growth material within a logic region of a semiconductor structure. A method can include performing simultaneously with the growing epitaxial growth within an analog region of the semiconductor structure. A method can include performing epitaxial growth to form an epitaxial growth formation that defines an electrode of an analog device within an analog region of the semiconductor structure, wherein the performing includes using a first surface and a second surface as seed surfaces.