Abstract:
A printed wiring board for package-on-package includes a first insulating layer, a wiring layer including a conductor pattern and formed on first surface of the first insulating layer, a second insulating layer formed on first surface side of the first insulating layer, electrodes formed in through holes of the first insulating layer respectively such that the electrodes electrically connect to the conductor pattern and have exposed surfaces exposed from second surface of the first insulating layer, first pads formed on the second insulating layer and positioned to connect an IC chip in center portion of the second insulating layer, second pads formed on the second insulating layer and positioned in outer edge portion of the second insulating layer to connect a second printed wiring board, and via conductors formed in the second insulating layer such that the via conductors electrically connect the first and second pads to the conductor pattern.
Abstract:
A printed wiring board includes an uppermost insulating layer, first pads positioned to mount an IC chip on the insulating layer, second pads positioned to mount a second printed wiring board on the insulating layer, metal posts formed on the second pads, respectively, such that the metal posts mount the second board over the chip, and a solder resist layer formed on the uppermost insulating layer and having first and second openings such that the first openings exposes the first pads and that the second openings exposes the second pads, respectively. The metal posts are formed such that each of the metal posts has a diameter which is smaller than a diameter of each of the second opening portions, and the second opening portions are formed such that the diameter of each of the second opening portions is smaller than a diameter of each of the second pads.
Abstract:
A printed wiring board includes a first insulating layer, a first conductor layer formed on a surface of the first insulating layer and including first pads, and a wiring structure including a second conductor layer formed on the first insulating layer, a second insulating layer laminated on the second conductor layer, a third conductor layer formed on the second insulating layer, and formed through the second insulating layer. The second conductor layer includes second pads formed on the first insulating layer, the third conductor layer includes third pads formed on the second insulating layer, the via conductors are positioned such that the via conductors are connecting the second pads and the third conductor layer, and the wiring structure is formed such that the second conductor layer and third conductor layer are not electrically connected to the first conductor layer.
Abstract:
A method for manufacturing a printed wiring board includes forming a resin insulation layer on an interlayer resin insulation layer and conductive circuits such that the resin insulation layer has first openings exposing pad portions in central portion of the interlayer layer and second openings exposing pad portions in peripheral portion of the interlayer layer, forming a seed layer on the resin insulation layer, in the first and second openings and on the pad portions, forming on the seed layer a plating resist such that the resist has resist openings exposing the second openings and having diameters greater than the second openings, filling the resist openings with electrolytic plating material via the seed layer such that metal posts are formed in the resist openings, removing the resist from the resin insulation layer, and removing the seed layer exposed on the resin insulation layer by the removing of the resist.
Abstract:
A combined printed wiring board includes a multilayer printed wiring board having an outermost insulation layer, and a wiring film fixed to a portion of the outermost insulation layer of the multilayer printed wiring board. The wiring film includes dense-pitch pads formed on a semiconductor-mounting surface of the wiring film, the multilayer printed wiring board has sparse-pitch pads formed on a semiconductor-mounting surface of the multilayer printed wiring board, the dense-pitch pads are formed to facilitate electrical connection between a first semiconductor element and a second semiconductor element, and the sparse-pitch pads are formed to facilitate electrical connection between the multilayer printed wiring board and the first semiconductor element and/or the second semiconductor element.
Abstract:
A printed wiring board has a core base having an opening portion, an inductor component accommodated in the opening portion, and a filler resin filling gap between the component and a side wall of the opening portion. The component has a support layer, a first conductive pattern on the support, an interlayer insulation layer on the support and first pattern, a second conductive pattern on the insulation layer, and a via conductor in the insulation layer and connecting the first and second patterns, the insulation layer includes a magnetic layer and a resin layer covering the magnetic layer, the magnetic layer includes magnetic material and resin material and has a first hole, the insulation layer has a second hole penetrating through the resin layer such that the second hole passes through the first hole and extends to the first pattern, and the via conductor is formed in the second hole.