Abstract:
A system and a method is disclosed for selecting at least one vertical precoding vector of a three-dimensional Multiple Input Multiple Output (3D-MIMO) configuration based on Channel State Information-Reference Signal (CSI-RS) information that is feedback from a wireless terminal device to an evolved Node B (eNB). The 3D-MIMO CSI-RS process is configured for a plurality of CSI-RS ports in which the plurality of CSI-RS ports that are grouped into a plurality of CSI-RS port groups and in which corresponds to the 3D arrangement of antennas. CSI configuration information for the different CSI-RS port groups can be a time-domain-based CSI-RS process, a frequency-domain-based CSI-RS process, a code-domain-based CSI-RS process, or a combination thereof. CSI-RS information is measured for each CSI-RS group and feedback for selection of the at least one vertical precoding vector.
Abstract:
Briefly, in accordance with one or more embodiments, a base transceiver station having a first set of antennas and a second set of antennas geographically separated from the first set of antennas transmits a reference signal to a first device, and receives feedback from the first device. The feedback represents information that can be used to construct a weight adjustment vector. The base transceiver station selects a precoding vector from a codebook based at least in part on the feedback received from the first device, calculates the weight adjustment vector based at least in part on the feedback, and applies the weight adjustment vector to the selected precoding vector to provide an adjusted precoding vector. The base transceiver station then may transmit data to the first device using the adjusted precoding vector.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for transmitting periodic channel state information having large payload sizes. Other embodiments may be described and claimed.
Abstract:
Embodiments of a mobile device transmitter and methods for transmitting signals in different signal dimensions are generally disclosed herein. The mobile device transmitter comprises a mapper to map a block of two or more input modulation symbols to different signal dimensions comprising two or more spatial dimensions, and linear transform circuitry to perform a linear transform on the block of mapped input modulation symbols to generate a block of precoded complex-valued output symbols such that each output symbol carries some information of more than one input modulation symbol. The mobile device also comprises transmitter circuitry to generate time-domain signals from the blocks of precoded complex-valued output symbols for each of the spatial dimensions for transmission using the two or more antennas. The precoded complex-valued output symbols are mapped to different signal dimensions comprising at least different frequency dimensions prior to transmission.
Abstract:
Technology for mitigating edge effect interference in a Coordinated MultiPoint (CoMP) system having multiple CoMP clusters is disclosed. In an example, a method can include a macro node transmitting a cell range expansion request to user equipments (UEs) within a cell. A CoMP cluster for nodes within the cell that includes UEs operating with the cell range expansion can be generated. Blanked resources between a plurality of macro nodes for the CoMP clusters in the CoMP system can be coordinated using a muting preference including a blanked resource.
Abstract:
Technology to provide physical uplink control channel (PUCCH) resource allocation in time division duplex (TDD) for a hybrid automatic retransmission request-acknowledge (HARQ-ACK) transmission in a subframe n is disclosed. In an example, a user equipment (UE) can include first circuitry configured to detect a downlink control channel within a prior specified subframe that is received in time before the subframe n. The UE can include second circuitry configured to: determine that the downlink control channel detected within the prior specified subframe is one of a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH); and determine one of a legacy PUCCH resource for the HARQ-ACK transmission when the downlink control channel detected within the prior specified subframe is the PDCCH or an enhanced PUCCH resource for the HARQ-ACK transmission when the downlink control channel detected within the prior specified subframe is the EPDCCH.
Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may map individual enhanced control channel elements (eCCEs) of a physical resource block (PRB) pair to a plurality of non-continuous enhanced resource element groups (eREGs) of the PRB pair. The eNB may further map the plurality of eREGs to individual antenna ports for transmission to the UE, with individual antenna ports associated with a continuous group of eREGs. The eNB may assign at least a portion of an enhanced physical downlink control channel (ePDCCH) to one or more of the eCCEs for transmission to the UE. Additionally, or alternatively, an eNB may map eCCEs of a plurality of PRB pairs to a plurality of distributed resource block (DRB) pairs.
Abstract:
An enhanced physical down link control channel (ePDCCH) for Long Term Evolution (LTE) systems is described that is constructed using enhanced control channel elements (eCCEs). Techniques are also described by which user equipment (UE) may be implicitly allocated uplink resources for transmitting acknowledgements to data received via downlink resources allocated by an ePDCCH.
Abstract:
An apparatus and method that allow user equipment (UE) to transmit information directly with other user equipment, using a device-to-device (D2D) mode is disclosed herein. A first D2D UE (dUE1) that wishes so communicate to a second D2D UE (dUE2) in D2D mode makes various communications requests to an Evolved Node B (eNB), which can facilitate the connection between the dUE1 and the dUE2. Among these requests are to make the D2D connection via WiFi instead of via Long Term Evolution (LTE). The eNB determines the WiFi capabilities of dUE1 and dUE2, then assigns a subset of available channels to be scanned by dUE1 and a separate subset of available channels to be scanned by dUE2. Thereafter, the eNB can assign a WiFi channel based on the scans performed by dUE1 and dUE2.
Abstract:
This disclosure describes methods, apparatus, and systems related to non-contiguous channel bonding. A device may determine a wireless communication channel having one or more subchannels in accordance with one or more communication standards. The device may determine instructions to perform one or more clear channel assessments (CCAs) on at least one of the one or more subchannels. The device may cause to send the instructions to one or more first devices. The device may identify a frame received from at least one of the one or more first devices, wherein the frame is received on at least one available subchannel of the one or more subchannels.