Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
In one aspect, a method for forming a contact to a device is provided which includes the steps of: forming a conformal etch stop layer surrounding the device; forming a dielectric layer over and covering the device; forming a contact trench in the dielectric layer, wherein the contact trench is present over the device and extends down to, or beyond, the etch stop layer; exposing a contact region of the device within the contact trench by selectively removing a portion of the etch stop layer covering a top portion of the device; and filling the contact trench with a conductive material to form the contact to the device. Other methods for forming a contact to a device and also to BEOL wiring are provided as are device contact structures.
Abstract:
An interconnect structure is provided that includes at least one patterned and cured low-k dielectric material located on a surface of a patterned inorganic antireflective coating that is located atop a substrate. The inorganic antireflective coating comprises atoms of M, C and H wherein M is at least one of Si, Ge, B, Sn, Fe, Ta, Ti, Ni, Hf and La. The at least one cured and patterned low-k dielectric material and the patterned inorganic antireflective coating have conductively filled regions embedded therein and the at least one cured and patterned low-k dielectric material has at least one airgap located adjacent, but not directly in contact with the conductively filled regions.
Abstract:
Silsesquioxane polymers, silsesquioxane polymers in negative tone photo-patternable dielectric formulations, methods of forming structures using negative tone photo-patternable dielectric formulations containing silsesquioxane polymers, and structures made from silsesquioxane polymers.
Abstract:
The present disclosure relates to methods and devices for manufacturing a three-dimensional chip package. A method includes forming a linear groove on an alignment rail, attaching an alignment rod to the linear groove, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail. Another method includes forming an alignment ridge on an alignment rail, forming alignment channels on a plurality of integrated circuit chips, and aligning the plurality of integrated circuit chips by stacking the plurality of integrated circuit chips along the alignment rail.
Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
Silsesquioxane polymers that cure to porous silsesquioxane polymers, silsesquioxane polymers that cure to porous silsesquioxane polymers in negative tone photo-patternable dielectric formulations, methods of forming structures using negative tone photo-patternable dielectric formulations containing silsesquioxane polymers that cure to porous silsesquioxane polymers, structures containing porous silsesquioxane polymers and monomers and method of preparing monomers for silsesquioxane polymers that cure to porous silsesquioxane polymers.
Abstract:
A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
Abstract:
Techniques regarding pain treatment are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can include: a data collection component that can determine at least one parameter associated with a pain perception of a subject, a computing component that can determine a relationship between the pain perception and the at least one parameter using artificial intelligence, and can determine a treatment for the subject based on the relationship; and a treatment component that can cause a device associated with the subject to apply at least a portion of the treatment.
Abstract:
Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measureable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measureable electrical parameter to computer elements.