摘要:
It is intended to provide a semiconductor device and its manufacturing method in which a high-resistance region maintaining a high resistance even under high temperatures can be made in a nitride III-V compound semiconductor layer having an electric conductivity by ion implantation. After a nitride III-V compound semiconductor layer having an electric conductivity is grown, a high resistance region is formed in the nitride III-V compound semiconductor layer by locally implanting boron ions therein. The amount of implanted boron is preferably not less than {fraction (1/30)}, or more preferably not less than {fraction (1/15)}, of the carrier concentration of the nitride III-V compound semiconductor layer. The high-resistance region is used as a device isolating region of an electron moving device or as a current blocking layer of a semiconductor laser.
摘要:
A semiconductor light emitting device is prepared by the steps of forming a semiconductor layer 2 having a laminated structure containing at least a first cladding layer 6, a light emitting layer 7, and a second cladding layer 8 on a substrate 1 having {11-20} plane (plane a) as the main plane; and breaking integrally the semiconductor layer 2 and the substrate 1 under a heating condition to form a pair of facets on the above described substrate due to the plane which was cleaved in {1-102} plane (plane r) and at the same time, to form a pair of facets 3 extending along the above described pair of facets of the substrate 1 on the semiconductor layer 2.
摘要:
Disclosed herein is an insulating nitride layer suitable for group III-V nitride semiconductor devices. It has a high resistance and good insulating properties and hence it electrically isolates elements, without the active layer decreasing in conductivity. Disclosed also herein is a process for forming said nitride layer and a semiconductor device having said nitride layer for improved characteristic properties. The semiconductor device is an AlGaN/GaN HEMT or the like which has a GaN active layer and an insulating nitride layer formed thereon from a group III-V nitride compound semiconductor heavily doped mostly with a group IIB element (particularly Zn) in an amount not less than 1×1017/cm3.
摘要翻译:本文公开了适用于III-V族氮化物半导体器件的绝缘氮化物层。 它具有高电阻和良好的绝缘性能,因此电气隔离元件,而电导率不会降低活性层。 此处还公开了用于形成所述氮化物层的方法和具有用于改善特性的所述氮化物层的半导体器件。 半导体器件是AlGaN / GaN HEMT等,其具有由主要以IIB族元素(特别是Zn)重量掺杂的III-V族氮化物化合物半导体形成的GaN有源层和绝缘氮化物层, 小于1×10 17 / cm 3。
摘要:
A semiconductor crystal layer composed of GaN is grown on a base substrate composed of sapphire sandwiching a separating layer composed of AlN and a buffer layer composed of GaN. The separating layers and the buffer layers are distributed in the form of lines, and a flow-through hole for an etchant is formed in the side of these layers sandwiching an anti-growing film composed of SiO2. Thus, the etchant flows through the flow-through hole, the anti-growing film and the separating layer are etched, and the base substrate is easily isolated.
摘要:
In a semiconductor device manufacturing method capable of manufacturing semiconductor lasers, light emitting diodes or electron transport devices using nitride III-V compound semiconductors with a high productivity, a GaN semiconductor laser wafer is prepared in which a plurality of semiconductor lasers are formed on an AlGaInN semiconductor layer on a c-face sapphire substrate and separated from each other by grooves deep enough to reach the c-face sapphire substrate, and a p-side electrode and an n-side electrode are formed in each semiconductor laser. The GaN semiconductor laser wafer is bonded to a photo-diode built-in Si wafer having formed a photo diode for monitoring light outputs and solder electrodes in each pellet by positioning the p-side electrode and the n-side electrode in alignment with the solder electrodes, respectively. After that, by lapping the c-face sapphire substrate from its bottom surface deep enough to reach the grooves or by dicing the c-face sapphire substrate from its bottom surface, the semiconductor lasers on the photo-diode built-in Si wafer are separated from each other. After that, the photo-diode built-in Si wafer is divided by dicing into discrete pellets. A GaN semiconductor laser chip, thus obtained, is assembled on a package.
摘要:
After making a GaN FET by growing GaN semiconductor layers on the surface of a sapphire substrate, the bottom surface of the sapphire substrate is processed by lapping, using an abrasive liquid containing a diamond granular abrasive material and reducing the grain size of the abrasive material in some steps, to reduce the thickness of the sapphire substrate to 100 &mgr;m or less. Thereafter, the bottom surface of the sapphire substrate is processed by etching using an etchant of phosphoric acid or phosphoric acid/sulfuric acid mixed liquid to remove a strained layer by lapping. Then, after making a via hole by etching the bottom surface of the sapphire substrate by using a similar etchant, the GaN semiconductor layer at the bottom of the via hole is removed by RIE to expose a Au pad electrically connected to the source of GaN FET. Thereafter, a thick Au film electrically connected to the Au pad is made through the via hole. The via hole may be made by irradiation of a pulse laser beam from a CO2 laser and subsequent etching.
摘要:
A method for growing a single crystal III-V compound semiconductor layer, in which grown by vapor deposition on a first single crystal III-V compound semiconductor layer including at least Ga and N is a second single crystal III-V compound semiconductor layer different from the first layer and including at least Ga and N, comprises the steps of: growing a buffer layer other than single crystal and having substantially the same composition as that of the second layer by vapor deposition on the first layer; and growing the second layer on the buffer layer. A method for growing a single crystal AlGaN layer on a single crystal GaN layer by vapor deposition, comprises the steps of: growing a buffer layer of a III-V compound semiconductor including at least Ga and N on the single crystal GaN layer by vapor deposition; and growing the single crystal AlGaN layer on the buffer layer by vapor deposition. A method for growing single crystal III-V compound semiconductor layers, in which a first single crystal III-V compound semiconductor layer including at least Ga and N and a second single crystal III-V compound semiconductor layer different from the first layer and including at least Ga and N are grown on a substrate by vapor deposition, comprises the step of: growing a buffer layer of a III-V compound semiconductor including at least Ga and N between the first layer and the second layer.
摘要:
A luminous intensity of a semiconductor light emitting device having a multi-layer structure formed of nitride group III-V compound semiconductors is improved by having a thickness d of a light emitting layer (active layer) of the semiconductor light emitting device having a multi-layer structure of nitride group III-V compound semiconductors ranging from 0.3 nm to 1.5 nm.
摘要:
A semiconductor light emitting device is provided, which does not deteriorate in luminance, maintains a high reliability, permits more free choice of an adhesive, and promises effective extraction of light to the exterior even when it is bonded to a lead frame or other support with the adhesive in practical use. In a GaN light emitting diode, GaN compound semiconductor layers are stacked sequentially on a front surface of a sapphire substrate to form a light emitting diode structure, and a reflective film is formed on a rear surface. Alternatively, the GaN compound semiconductor layers forming the light emitting diode structure are selectively removed by etching to define an inverted mesa-shaped end surface, and the reflective film is formed on the end surface. Both the p-side electrode and the n-side electrode are formed on a common side of the substrate where the GaN compound semiconductor layers are formed.
摘要:
It is intended to provide a semiconductor device and its manufacturing method in which a high-resistance region maintaining a high resistance even under high temperatures can be made in a nitride III-V compound semiconductor layer having an electric conductivity by ion implantation. After a nitride III-V compound semiconductor layer having an electric conductivity is grown, a high resistance region is formed in the nitride III-V compound semiconductor layer by locally implanting boron ions therein. The amount of implanted boron is preferably not less than 1/30, or more preferably not less than 1/15, of the carrier concentration of the nitride III-V compound semiconductor layer. The high-resistance region is used as a device isolating region of an electron moving device or as a current blocking layer of a semiconductor laser.