Abstract:
Disclosed embodiments include an embedded thin-film capacitor and a magnetic inductor that are assembled in two adjacent build-up layers of a semiconductor package substrate. The thin-film capacitor is seated on a surface of a first of the build-up layers and the magnetic inductor is partially disposed in a recess in the adjacent build up layer. The embedded thin-film capacitor and the integral magnetic inductor are configured within a die shadow that is on a die side of the semiconductor package substrate.
Abstract:
Disclosed embodiments include an embedded thin-film capacitor and a magnetic inductor that are assembled in two adjacent build-up layers of a semiconductor package substrate. The thin-film capacitor is seated on a surface of a first of the build-up layers and the magnetic inductor is partially disposed in a recess in the adjacent build up layer. The embedded thin-film capacitor and the integral magnetic inductor are configured within a die shadow that is on a die side of the semiconductor package substrate.
Abstract:
Techniques are provided for an inductor at a first level interface between a first die and a second die. In an example, the inductor can include a winding and a core disposed inside the winding. The winding can include first conductive traces of a first die, second conductive traces of a second die, and a plurality of connectors configured to connect the first die with the second die. Each connector of the plurality of connecters can be located between a trace of the first conductive traces and a corresponding trace of the second conductive traces.
Abstract:
A substrate for an integrated circuit package, the substrate comprising a dielectric, at least one conductor plane within the dielectric, and a planar magnetic structure comprising an organic magnetic laminate embedded within the dielectric, wherein the planar magnetic structure is integrated within the at least one conductor plane.
Abstract:
Techniques and mechanisms for providing effective connectivity with surface level microbumps on an integrated circuit package substrate. In an embodiment, different metals are variously electroplated to form a microbump which extends through a surface-level dielectric of a substrate to a seed layer including copper. The microbump includes nickel and tin, wherein the nickel aids in mitigating an absorption of seed layer copper. In another embodiment, the microbump has a mass fraction of tin, or a mass fraction of nickel, that is different in various regions along a height of the microbump.
Abstract:
Techniques and mechanisms for providing effective connectivity with surface level microbumps on an integrated circuit package substrate. In an embodiment, different metals are variously electroplated to form a microbump which extends through a surface-level dielectric of a substrate to a seed layer including copper. The microbump includes a combination of tin and zinc that mitigates precipitation of residual copper by promoting the formation of miconstituents in the microbump. In another embodiment, the microbump has a mass fraction of zinc, or a mass fraction of tin, that is different in various regions along a height of the microbump.
Abstract:
Methods of forming sensor integrated package devices and structures formed thereby are described. An embodiment includes providing a substrate core, wherein a first conductive trace structure and a second conductive trace structure are disposed on the substrate core, forming a cavity between the first conductive trace structure and the second conductive trace structure, and placing a magnet on a resist material disposed on a portion of each of the first and second conductive trace structures, wherein the resist material does not extend over the cavity.
Abstract:
A pressure sensor is integrated into an integrated circuit fabrication and packaging flow. In one example, a releasable layer is formed over a removable core. A first dielectric layer is formed. A metal layer is patterned to form conductive metal paths and to form a diaphragm with the metal. A second dielectric layer is formed over the metal layer and the diaphragm. A second metal layer is formed to connect with formed vias and to form a metal mesh layer over the diaphragm. The first dielectric layer is etched under the diaphragm to form a cavity and the cavity is covered to form a chamber adjoining the diaphragm.
Abstract:
This disclosure relates generally to an electronic assembly and methods that include a dielectric material forming a cavity, a magnet positioned to induce a magnetic field within the cavity, a conductive trace positioned, at least in part, within the cavity, and a frequency detection circuit configured to detect the frequency of the maximal electromotive force as induced and produce an output proportional to a temperature of the conductive trace. The conductive trace resonates within the cavity based on a temperature-dependent resonant frequency of the conductive trace and a sinusoidal current induced through the conductive trace by a current source, the sinusoidal current induces a maximal electromotive force when a frequency of the sinusoidal current has an approximately equal magnitude to the temperature-dependent resonant frequency of the conductive trace, and the maximal electromotive force, as induced, has a substantially equal frequency as the temperature-dependent resonant frequency of the conductive trace.
Abstract:
Transmission pathways in substrates, and associated methods are shown. Example transmission pathways include a semiconductor substrate with a core, a dielectric layer fixed on the core, at least one first electrical transmission pathway extending through at least one of the dielectric layer and the core. The first pathway includes a magnetic material disposed within the at least the core of the at least one first electrical transmission pathway, at least one second electrical transmission pathway extending through the magnetic material, a nickel layer disposed on inner circumferential surface of the magnetic material at least within the second electrical transmission pathway, a copper layer disposed on at least the nickel layer within the second electrical transmission pathway. The dielectric spacer or the nickel layer separates the copper layer from the magnetic material. At least one third pathway extends through at least one of the dielectric layer and the core separate from the at least one electrical transmission pathway.