摘要:
An inner stripe laser diode structure for GaN laser diodes is disclosed. Inner stripe laser diode structures provide a convenient means of achieving low threshold, single mode laser diodes. The structure of an inner stripe laser diode is modified to produce lateral index guiding.
摘要:
A self aligned, index-guided, buried heterostructure AlGalnN laser diode provides improved mode stability and low threshold current when compared to conventional ridge waveguide structures. A short period superlattice is used to allow adequate cladding layer thickness for confinement without cracking. The intensity of the light lost due to leakage is reduced by about 2 orders of magnitude with an accompanying improvement in the far-field radiation pattern when compared to conventional structures. The comparatively large p-contact area allowed by the self-aligned architecture contributes to a lower diode voltage and less heat during continuous wave operation of the laser diode.
摘要:
A structure and method for an asymmetric waveguide nitride laser diode without need of a p-type waveguide is disclosed. The need for a high aluminum tunnel barrier layer in the laser is avoided.
摘要:
Group III-V nitride semiconductors are used as optoelectronic light emitters. The semiconductor alloy InGaN is used as the active region in nitride laser diodes and LEDs, as its bandgap energy can be tuned by adjusting the alloy composition, to span the entire visible spectrum. InGaN layers of high-indium content, as required for blue or green emission are difficult to grow, however, because the poor lattice mismatch between GaN and InGaN causes alloy segregation. In this situation, the inhomogeneous alloy composition results in spectrally impure emission, and diminished optical gain. To suppress segregation, the high-indium-content InGaN active region may be deposited over a thick InGaN layer, substituted for the more typical GaN. First depositing a thick InGaN layer establishes a larger lattice parameter than that of GaN. Consequently, a high indium content heterostructure active region grown over the thick InGaN layer experiences significantly less lattice mismatch compared to GaN. Therefore, it is less likely to suffer structural degradation due to alloy segregation. Thus, the thick GaN structure enables the growth of a high indium content active region with improved structural and optoelectronic properties, leading to LEDs with spectrally pure emission, and lower threshold laser diodes.
摘要:
Embodiments of the invention include a III-nitride semiconductor layer including a first portion having a first defect density and a second portion having a second defect density. The first defect density is greater than the second defect density. An insulating material is disposed over the first portion. The insulating material is not formed on or is removed from the second portion.
摘要:
A method according to embodiments of the invention includes epitaxially growing a III-nitride semiconductor layer from a gas containing gallium, a gas containing nitrogen, and a gas containing indium. The concentration of indium in the III-nitride semiconductor structure is greater than zero and less than 1020 cm−3. A structure according to embodiments of the invention includes a super lattice of alternating first and second III-nitride layers. The first layers are more highly doped than the second layers. The average dopant concentration in the super lattice is less than 1020 cm−3.
摘要:
A method of reusing a III-nitride growth substrate according to embodiments of the invention includes epitaxially growing a III-nitride semiconductor structure on a III-nitride substrate. The III-nitride semiconductor structure includes a sacrificial layer and an additional layer grown over the sacrificial layer. The sacrificial layer is implanted with at least one implant species. The III-nitride substrate is separated from the additional layer at the implanted sacrificial layer. In some embodiments the III-nitride substrate is GaN and the sacrificial layer is GaN, an aluminum-containing III-nitride layer, or an indium-containing III-nitride layer. In some embodiments, the III-nitride substrate is separated from the additional layer by etching the implanted sacrificial layer.
摘要:
The present invention relates to electronic devices formed in crystallites of III-V nitride materials. Specifically, the present invention simplifies the processing technology required for the fabrication of high-performance electronic devices in III-V nitride materials.
摘要:
Group III-V nitride films are fabricated on mesas patterned either on substrates such as sapphire substrates, or on mesas patterned on group III-V nitride layers grown on substrates. The mesas provide reduced area surfaces for epitaxially growing group III-V nitride films, to reduce thermal film stresses in the films to reduce cracking. The surfaces of the mesas on which the films are grown are dimensioned and oriented to reduce the number of thin film crack planes that can grow on the mesas. Further cracking reduction in the films can be achieved by thinning the substrate to form membranes. The reduced substrate thickness at the membranes reduces the thermal expansion mismatch tensile stress in the films. The mesas can reduce or eliminate the occurrence of cracks in GaN or AlGaN epitaxial films grown on the mesas, for percentages of aluminum in the AlGaN films of up to about 18%. The improved group III-V nitride films can be used in optoelectronic devices including LEDs and edge and surface emitting laser diodes.
摘要:
Method and structure for nitride-based laser diode arrays on a conducting substrate are disclosed. Air-bridge structures are used to make compact laser diode arrays suitable for printer applications. The use of a channel structure architecture allows the making of surface emitting laser diode arrays.