摘要:
A method of fabricating a group III-nitride semiconductor includes the following steps of: forming a first patterned mask layer with a plurality of first openings deposited on an epitaxial substrate; epitaxially growing a group III-nitride semiconductor layer over the epitaxial substrate and covering at least part of the first patterned mask layer; etching the group III-nitride semiconductor layer to form a plurality of second openings, which are substantially at least partially aligned with the first openings; and epitaxially growing the group III-nitride semiconductor layer again.
摘要:
A method for fabricating a semiconductor layer comprising: a) growing a semiconductor layer on a foreign substrate; b) forming at least one opening on the semiconductor layer, wherein the opening exposes the interface between the semiconductor layer and the foreign substrate; and c) removing at least part of the semiconductor solid state material along the interface between the semiconductor layer and the foreign substrate. The removing step c) is preferably achieved by selective interfacial chemical etching. The semiconductor layer may be utilized as a substrate for fabrication of a wide variety of electronic and opto-electronic devices and integrated circuitry products.
摘要:
A method of fabricating a group III-nitride semiconductor includes the following steps of forming a first patterned mask layer with a plurality of first openings deposited on an epitaxial substrate; epitaxially growing a group III-nitride semiconductor layer over the epitaxial substrate and covering at least part of the first patterned mask layer; etching the group III-nitride semiconductor layer to form a plurality of second openings, which are substantially at least partially aligned with the first openings; and epitaxially growing the group III-nitride semiconductor layer again.
摘要:
A semiconductor light emitting device is disclosed, which comprises: a substrate having a first surface and a second surface; a first semiconductor conductive layer is disposed on the first surface of the substrate; an insert layer is disposed on the first semiconductor conductive layer; an active layer is disposed on the insert layer; a second semiconductor conductive layer is disposed on the active layer; a first electrode is disposed on the second semiconductor conductive layer; and a second electrode is disposed on the second surface of the substrate, in which the electric of the second electrode is opposite to that of the first electrode.
摘要:
The present disclosure involves a light-emitting device. The light-emitting device includes an n-doped gallium nitride (n-GaN) layer located over a substrate. A multiple quantum well (MQW) layer is located over the n-GaN layer. An electron-blocking layer is located over the MQW layer. A p-doped gallium nitride (p-GaN) layer is located over the electron-blocking layer. The light-emitting device includes a hole injection layer. In some embodiments, the hole injection layer includes a p-doped indium gallium nitride (p-InGaN) layer that is located in one of the three following locations: between the MQW layer and the electron-blocking layer; between the electron-blocking layer and the p-GaN layer; and inside the p-GaN layer.
摘要:
A nano-patterned substrate includes a plurality of nano-particles or nanopillars on an upper surface thereof. A ratio of height to diameter of each of the nano-particles or each of the nanopillars is either greater than or equal to 1. Particularly, a ratio of height to diameter of the nanopillars is greater than or equal to 5. Each of the nano-particles or each of the nanopillars has an arc-shaped top surface. When an epitaxial growth process is applied onto the nano-patterned substrate to form an epitaxial layer, the epitaxial layer has very low defect density. Thus, a production yield of fabricating the subsequent device can be improved.
摘要:
A light-trapping layer is integrated into a thin-film solar cell. It is integrated as a light-inlet layer, an intermediate layer or a shaded layer with nano-particles embedded in a transparent or non-transparent conductive film. Thus, light stays longer in an absorption layer with photocurrent increased; defects of interface between the absorption layer and the nano-material are decreased; anti-reflective effect to inlet light is enhanced; and a good integrity and a good reliability for long-time light-shining are obtained.
摘要:
A method of forming thin-film structure by oblique-angle deposition is provided. The method includes the steps of: evaporating target source in a chamber by an electron beam evaporation system, and introducing process gas into the chamber and adjusting tilt angle of the evaporation substrate and controlling temperature in the chamber during evaporation to form thin-film on a evaporation substrate by oblique-angle deposition, and then annealing the evaporation substrate to form a thin-film having porous nanorod microstructure.
摘要:
A laser diode that includes a light guiding structure that improves the light-output-versus-current curve by altering the multiple spatial modes of the laser diode. A laser diode according to the present invention includes a bottom mirror constructed on an electrically conducting material, an active region constructed from a first conductive spacer situated above the bottom mirror, a light emitting layer, and a second conductive spacer situated above the light emitting layer. The laser diode also includes a top mirror constructed from a plurality of mirror layers of a semiconducting material of a first conductivity type that are located above the second conductive spacer. The adjacent mirror layers have different indexes of refraction. One or more of the top mirror layers is altered to provide an aperture defining layer that includes an aperture region that alters the spatial modes of the device.
摘要:
A method for patterning an epitaxial substrate includes: (a) forming an etch mask layer over an epitaxial substrate, and patterning the etch mask layer using a patterned cover mask layer to form the etch mask layer into a plurality of spaced apart mask patterns; and (b) etching the epitaxial substrate that is exposed from the mask patterns, and removing the mask patterns such that the epitaxial substrate is formed with a plurality of spaced apart substrate patterns.