Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, and side areas connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the optoelectronic semiconductor chip is a flip-chip having the electrical contract locations only at one side, either the underside or the top side, the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the shaped body is free of a via that electrically connects the optoelectronic semiconductor chip.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having side areas, a surface at a top side of the semiconductor chip, and a surface at a bottom side of the semiconductor chip; a shaped body having a surface at a top side of the shaped body and a surface at an underside of the shaped body; at least one plated-through hole including an electrically conductive material; and an electrically conductive connection electrically conductively connected to the semiconductor chip and the plated-through hole, wherein the side areas of the optoelectronic semiconductor chip are covered by the shaped body, and the surface at the top side and/or the surface at the bottom side of the optoelectronic semiconductor chip are completely free of the shaped body.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having side areas, a surface at a top side of the semiconductor chip, and a surface at a bottom side of the semiconductor chip; a shaped body having a surface at a top side of the shaped body and a surface at an underside of the shaped body; at least one plated-through hole including an electrically conductive material; and an electrically conductive connection electrically conductively connected to the semiconductor chip and the plated-through hole, wherein the side areas of the optoelectronic semiconductor chip are covered by the shaped body, and the surface at the top side and/or the surface at the bottom side of the optoelectronic semiconductor chip are completely free of the shaped body.
Abstract:
The invention relates to an optoelectronic semiconductor component, which has a carrier element (1), on which an optoelectronic semiconductor chip (2) having at least one active layer is arranged, wherein the active layer is designed to emit or receive light during operation and wherein the semiconductor chip (2) is covered with a protective layer (3) that contains poly-para-xylenes.
Abstract:
In at least one embodiment, the semiconductor component includes at least one optoelectronic semiconductor chip having a radiation exit side. The surface-mountable semiconductor component comprises a shaped body that covers side surfaces of the semiconductor chip directly and in a positively locking manner. The shaped body and the semiconductor chip do not overlap, as seen in a plan view of the radiation exit side.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, at least one side area connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and a molded body, wherein the molded body surrounds the optoelectronic semiconductor chip at all side areas at least in places, the molded body is electrically insulating, and the molded body is free of any conductive element that completely penetrates the molded body.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, side areas connecting the top area and the bottom area, and epitaxially produced layers; electrical n- and p-side contacts at the bottom area of the optoelectronic semiconductor chip; and an electrically insulating shaped body, wherein the shaped body surrounds the optoelectronic semiconductor chip at its side areas, and the epitaxially produced layers are free from the shaped body.
Abstract:
An optoelectronic device and a method for producing an optoelectronic device are disclosed. An embodiment of an optoelectronic device includes a carrier, an electrically conductive layer arranged on the carrier, at least one semiconductor chip comprising an active layer for generating electromagnetic radiation, wherein the semiconductor chip is electrically conductively and mechanically connected with the carrier via the electrically conductive layer. The device further comprises a holder, wherein a surface of the carrier remote from the semiconductor chip is arranged on the holder, wherein the carrier is mechanically connected with the holder by at least one fastening element and is fastened to the holder, wherein the fastening element passes completely through the carrier, and wherein the semiconductor chip is electrically conductively connected to the holder by the fastening element.
Abstract:
An optoelectronic semiconductor component and a method for making an optoelectronic semiconductor component are disclosed. In an embodiment the component includes a carrier including at least one conversion-medium body and a potting body, the potting body surrounding the conversion-medium body at least in places, as seen in plan view, electrical contact structures fitted at least indirectly to the carrier and a plurality of optoelectronic semiconductor chips fitted to a main face of the carrier, the optoelectronic semiconductor chips configured to generate radiation, wherein the conversion-medium body is shaped as a plate, wherein the semiconductor chips are directly mechanically connected to the conversion-medium body, and wherein the conversion-medium body is free of cutouts for the electrical contact structures and is not penetrated by the electrical contact structure.
Abstract:
An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, at least one side area connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and a molded body, wherein the molded body surrounds the optoelectronic semiconductor chip at all side areas at least in places, the molded body is electrically insulating, and the molded body is free of any conductive element that completely penetrates the molded body.