Abstract:
A method for metalizing a polymer substrate and a polymer article prepared by the method are provided. First, a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. Then, a surface of the polymer substrate is irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. The surface of the polymer substrate is then subjected to chemical plating.
Abstract:
A thermistor material and a method for preparing a thermistor material are provided. The thermistor material is prepared by mixing and heating a mixture containing BaTiO3, B2O3, SiO2, Li2O, P2O5, Cs2O, Nd2O3, Al2O3 and TiO2.
Abstract:
A coating composition, a composite prepared by using the coating composition, and a method for preparing the composite are provided. The coating composition includes a solvent, an adhesive, and a catalyst precursor including at least one chosen from SnO2, ZnSnO3 and ZnTiO3.
Abstract:
The present disclosure discloses an anti-yellowing composition comprising at least a phosphorus-containing compound and at least a pentaerythritol ester, wherein the phosphorus-containing compound is selected from a phosphate salt, and a concentration of the phosphorus-containing compound is 100-1600 parts by weight, relative to 100 parts by weight of the pentaerythritol ester. The present disclosure also discloses a resin composition containing the anti-yellowing composition, and a metal-resin composite formed with the resin composition and a metal substrate, and a preparation method and use thereof. The present disclosure further discloses an electronic product shell formed with the resin composition and a metal shell body.
Abstract:
A polymer product with a metal layer coated on the surface thereof is provided. The polymer product includes a polymer substrate and a metal layer formed on at least a part of a surface of the polymer substrate. The surface of the polymer substrate covered by the metal layer is formed by a polymer composition comprising a polymer and a doped tin oxide. A doping element of the doped tin oxide comprises niobium. The doped tin oxide has a coordinate L* value of about 70 to about 100, a coordinate a value of about −5 to about 5, and a coordinate b value of about −5 to about 5 in a CIELab color space.
Abstract:
Embodiments of the present disclosure are directed to a doped tin oxide. The doped tin oxide includes a tin oxide and at least one oxide of a doping element. The doping element includes at least one of vanadium and molybdenum. The doped tin oxide includes an amount of the tin oxide ranging from 90 mol % to 99 mol %, and an amount of the at least one oxide ranging from 1 mol % to 10 mol %.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First, a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. Then, a surface of the polymer substrate is irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. The surface of the polymer substrate is then subjected to chemical plating.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared by the method are provided. First, a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. Then, a surface of the polymer substrate is irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. The surface of the polymer substrate is then subjected to chemical plating.
Abstract:
A thermistor material and a method for preparing a thermistor material are provided. The thermistor material is prepared by mixing and heating a mixture containing BaTiO3, B2O3, SiO2, Li2O, P2O5, Cs2O, Nd2O3, Al2O3 and TiO2.