Abstract:
A semiconductor package includes a semiconductor chip, and including a passivation film disposed on an active surface and having a first opening exposing at least a portion of a connection pad of the semiconductor chip and a protective film disposed on the passivation film, filling at least a portion in the first opening, and having a second opening exposing at least a portion of the connection pad in the first opening, an encapsulant covering at least a portion of the semiconductor chip, and a connection structure disposed on the active surface of the semiconductor chip, and including a connection via connected to the connection pad in the first opening and the second opening and a redistribution layer electrically connected to the connection pad through the connection via. The second opening has a width narrower than a width of the first opening.
Abstract:
There is provided a method for fabricating a substrate structure capable of enhancing process reproducibility and process stability by trimming a bevel region of a substrate using a wafer level process. The method includes providing a first substrate including first and second surfaces opposite each other and a first device region formed at the first surface, providing a second substrate including third and fourth surfaces opposite each other and a second device region at the third surface, bonding the first substrate and the second substrate to electrically connect the first device region and the second device region, and forming a trimmed substrate. The forming the trimmed substrate includes etching an edge region of the second substrate bonded to the first substrate.
Abstract:
There is provided a method for fabricating a substrate structure capable of enhancing process reproducibility and process stability by trimming a bevel region of a substrate using a wafer level process. The method includes providing a first substrate including first and second surfaces opposite each other and a first device region formed at the first surface, providing a second substrate including third and fourth surfaces opposite each other and a second device region at the third surface, bonding the first substrate and the second substrate to electrically connect the first device region and the second device region, and forming a trimmed substrate. The forming the trimmed substrate includes etching an edge region of the second substrate bonded to the first substrate.
Abstract:
A method of manufacturing a semiconductor package, the method including forming a hole that penetrates an interconnect substrate; providing a first carrier substrate below the interconnect substrate; providing a semiconductor chip in the hole; forming a molding layer by coating a molding composition on the semiconductor chip and the interconnect substrate; adhering a second carrier substrate onto the molding layer with an adhesive layer; removing the first carrier substrate to expose a bottom surface of the semiconductor chip and a bottom surface of the interconnect substrate; forming a redistribution substrate below the semiconductor chip and the interconnect substrate; detaching the second carrier substrate from the adhesive layer; and removing the adhesive layer.
Abstract:
Methods for fabricating semiconductor devices having through electrodes are provided. The method may comprise forming a via hole which opens towards an upper surface of a substrate and disconnects with a lower surface of the substrate; forming a via isolation layer which extends along an inner surface of the via hole and covers the upper surface of the substrate; forming a seed layer on the via isolation layer which extends along the via isolation layer; annealing the seed layer in-situ after forming the seed layer; forming a conductive layer, filling the via hole, by an electroplating using the seed layer; and planarizing the upper surface of the substrate to form a through electrode surrounded by the via isolation layer in the via hole.
Abstract:
A substrate processing apparatus may include a substrate jig device and a transfer unit, which is configured to hold a substrate in a non-contact state and move the substrate toward the substrate jig device. The substrate jig device may include a supporter, which is configured to support an edge of the substrate and have an opening, a first suction part, which overlaps with a center region of the opening and is configured to move in a first direction, and a plurality of second suction parts, which overlap with an edge region of the opening and are configured to move toward the opening. Here, the first direction may be a direction passing through the opening.
Abstract:
Embodiments of the present inventive concepts provide a wafer loader having one or more buffer zones to prevent damage to a wafer loaded in the wafer loader. The wafer loader may include a plurality of loading sections that protrude from a main body and are configured to be arranged at various locations along an edge of the wafer. Each of the loading sections may include a groove into which the edge of the wafer may be inserted. The loading section may include first and second protrusions having first and second inner sides, respectively, that face each other to define the groove therebetween. At least one of the first and second inner sides may include a recess to define the buffer zone.
Abstract:
Provided are a carrier and a method of fabricating a semiconductor device using the same. The carrier may include a recess region provided adjacent to an edge thereof. The recess region may be configured to confine an adhesive layer within a desired region including the recess region. The recess region makes it possible to reduce a process failure in a process of fabricating a semiconductor device.
Abstract:
Semiconductor devices having through-vias and methods for fabricating the same are described. The method may include forming a hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a sacrificial layer partially filling the hole, forming a through-via in the hole partially filled with the sacrificial layer, forming a via-insulating layer between the through-via and the substrate, and exposing the through-via through a bottom surface of the substrate. Forming the sacrificial layer may include forming an insulating flowable layer on the substrate, and constricting the insulating flowable layer to form a solidified flowable layer.
Abstract:
Provided are semiconductor devices with a through electrode and methods of fabricating the same. The methods may include forming a via hole at least partially penetrating a substrate, the via hole having an entrance provided on a top surface of the substrate, forming a via-insulating layer to cover conformally an inner surface of the via hole, forming a buffer layer on the via-insulating layer to cover conformally the via hole provided with the via-insulating layer, the buffer layer being formed of a material whose shrinkability is superior to the via-insulating layer, forming a through electrode to fill the via hole provided with the buffer layer, and recessing a bottom surface of the substrate to expose the through electrode.