Abstract:
Provided is an optical device including an active layer, which includes two outer barriers and a coupled quantum well between the two outer barriers. The coupled quantum well includes a first quantum well layer, a second quantum well layer, a third quantum well layer, a first coupling barrier between the first quantum well layer and the second quantum well layer, and a second coupling barrier between the second quantum well layer and the third quantum well layer. The second quantum well layer is between the first quantum well layer and the third quantum well layer. An energy band gap of the second quantum well layer is less than an energy band gap of the first quantum well layer, and an energy band gap of the third quantum well layer is equal to or less than the energy band gap of the second quantum well layer.
Abstract:
An infrared detector and an infrared sensor including the infrared detector are provided. The infrared detector includes a plurality of quantum dots spaced apart from each other and including a first component, a first semiconductor layer covering the plurality of quantum dots, and a second semiconductor layer covering the first semiconductor layer.
Abstract:
An optical modulator is provided, including a lower reflection layer, an active layer formed on the lower reflection layer, and an upper reflection layer formed on the active layer. The active layer includes a multiple quantum well structure including a quantum well layer and a quantum barrier layer. The upper reflection layer includes a dielectric material. A plurality of micro cavity layers are included in the upper reflection layer.
Abstract:
Provided are a transmission type high-absorption optical modulator and a method of manufacturing the transmission type high-absorption optical modulator. The optical modulator includes: a substrate; a lower distributed Bragg reflector (DBR) layer on the substrate; a lower clad layer on the lower DBR layer; an active layer that is formed on the lower clad layer and includes a quantum well layer and a quantum barrier layer; an upper clad layer on the active layer; an upper DBR layer on the upper clad layer; and a doping layer that supplies carriers to the quantum well layer. In the optical modulator, the doping layer may be included in the quantum barrier layer or in at least one of the upper and lower clad layers.
Abstract:
An optical device includes a multilayered GaAs structure including a plurality of sublayers and an optical structure layer on the multilayered GaAs structure, the optical structure layer including a Group III-V compound semiconductor material. The optical structure layer may be, for example, a light-emitting layer having a multi-quantum well structure.
Abstract:
Provided are an infrared detecting device and an infrared detecting system including the infrared detecting device. The infrared detecting device includes at least one infrared detector, and the at least one infrared detector includes a substrate, a buffer layer, and at least one light absorbing portion. The buffer layer includes a superlattice structure.
Abstract:
An infrared detector and an infrared sensor including the infrared detector are provided. The infrared detector includes a plurality of quantum dots spaced apart from each other and including a first component, a first semiconductor layer covering the plurality of quantum dots, and a second semiconductor layer covering the first semiconductor layer.
Abstract:
Provided is an optical device including an active layer, which includes two outer barriers and a coupled quantum well between the two outer barriers. The coupled quantum well includes a first quantum well layer, a second quantum well layer, a third quantum well layer, a first coupling barrier between the first quantum well layer and the second quantum well layer, and a second coupling barrier between the second quantum well layer and the third quantum well layer. The second quantum well layer is between the first quantum well layer and the third quantum well layer. An energy band gap of the second quantum well layer is less than an energy band gap of the first quantum well layer, and an energy band gap of the third quantum well layer is equal to or less than the energy band gap of the second quantum well layer.
Abstract:
An edge emitting laser light source and a three-dimensional (3D) image obtaining apparatus including the edge emitting laser light source are provided. The edge emitting laser light source includes a substrate; an active layer disposed on the substrate; a wavelength selection section comprising grating regions configured to select wavelengths of light emitted from the active layer; and a gain section configured to resonate the light having the selected wavelengths in a direction parallel with the active layer.
Abstract:
An optical device includes an active layer that includes at least two outer barriers and at least one coupled quantum well that is inserted between the at least two outer barriers. Each coupled quantum well includes at least three quantum well layers and at least two coupling barriers that are respectively provided between the at least three quantum well layers. Thicknesses of two quantum well layers disposed at opposite end portions of the at least three quantum well layers are less than a thickness of the other quantum well layer disposed between the two quantum well layers disposed at the opposite end portions. A bandgap of the two quantum well layers disposed at the opposite end portions may be higher than a bandgap of the other quantum well layer disposed between the two quantum well layers.