Abstract:
A method of operating a memory device includes applying an initial read voltage to a selected wordline to perform a read operation on memory cells connected to the selected wordline, determining whether a read failure occurs with respect to one or more of the memory cells, upon determining that a read failure has occurred with respect to some of the memory cells, determining threshold voltage distribution information for distinct groups of the memory cells, and determining a new read voltage to be applied to the selected wordline based on the threshold voltage distribution information.
Abstract:
A method of controlling a first memory controller that controls a non-volatile memory device includes: the first memory controller receiving first data and a first physical address from a second memory controller via a first interface of the first memory controller; the first memory controller storing the first data in a non-volatile memory buffer of the first memory controller; and the first memory controller programming the first data stored in the non-volatile memory buffer in a first physical region of the non-volatile memory device corresponding to the first physical address.
Abstract:
A non-volatile memory device includes a memory cell array including a plurality of memory cells, a page buffer circuit, and a control logic circuit. The page buffer circuit includes a plurality of first page buffers and a plurality of second page buffers, each including a sense latch, a data latch, and a cache latch. The sense latch senses data stored in the memory cell array and dumps the sensed data to the data latch, the data latch dumps the data dumped by the sense latch to the cache latch, and the cache latch transmits the data dumped by the data latch to a data I/O circuit. While the cache latch included in at least one of the plurality of first page buffers is performing a data transmit operation, the data latch included in at least one of the plurality of second page buffers performs a data dumping operation.
Abstract:
A semiconductor device includes a semiconductor die, a defect detection structure and an input-output circuit. The semiconductor die includes a central region and a peripheral region surrounding the central region. The peripheral region includes a left-bottom corner region, a left-upper corner region, a right-upper corner region and a right-bottom corner region. The defect detection structure is formed in the peripheral region. The defect detection structure includes a first conduction loop in the left-bottom corner region, a second conduction loop in the right-bottom corner region, a third conduction loop in the left-bottom corner region and the left-upper corner region and a fourth conduction loop in the right-bottom corner region and the right-upper corner region. The input-output circuit is electrically connected to end nodes of the first conduction loop, the second conduction loop, the third conduction loop and the fourth conduction loop.
Abstract:
A flash memory management method is provided. According to the method, when a request to write the predetermined data to a page to which data has been written is made, the predetermined data is written to a log block corresponding to a data block containing the page. When a request to write the predetermined data to the page again is received, the predetermined data is written to an empty free page in the log block. Even if the same page is requested to be continuously written to, the management method allows this to be processed in one log block, thereby improving the effectiveness in the use of flash memory resources.
Abstract:
A method of programming a nonvolatile memory device including multi-level cells that store multi-bit data, includes performing a pre-programming operation that programs at least some of the multi-level cells to a plurality of intermediate states which are different from an erased state, and performing a main programming operation that programs the multi-level cells to a plurality of target states corresponding to the multi-bit data. At least some of the intermediate program states have threshold voltage distributions that partially overlap each other.
Abstract:
A nonvolatile memory device may include a plurality of memory planes and a plurality of plane-dedicated pad sets. The plurality of memory planes may include a plurality of memory cell arrays including nonvolatile memory cells and a plurality of page buffer circuits. Each of the plurality of page buffer circuits may be connected to ones of the nonvolatile memory cells included in each of the plurality of memory cell arrays through bitlines. A plurality of plane-dedicated pad sets may be connected to the plurality of page buffer circuits through a plurality of data paths respectively such that each of the plurality plane-dedicated pad sets is dedicatedly connected to each of the plurality of page buffer circuits. A bandwidth of a data transfer may be increased by reducing a data transfer delay and supporting a parallel data transfer, and power consumption may be decreased by removing data multiplexing and/or signal routing.
Abstract:
A memory system including a controller that generates a processor clock, and a plurality of memory devices each including an internal clock generator that generates an internal clock in synchronization with the processor clock, and a memory that performs a peak current generation operation in synchronization with the internal clock, wherein at least two of the memory devices generate their respective internal clocks at different times such that the corresponding peak current generation operations are performed at different times.