Abstract:
A bevel etching apparatus includes a chuck plate that is configured to receive a substrate, a lower ring surrounding a circumference of the chuck plate, a cover plate on the chuck plate, and an upper ring surrounding a circumference of the cover plate. The lower ring includes a ring base and a protrusion that extends upwardly from an edge of the ring base and surrounds a lower portion of a sidewall of the substrate.
Abstract:
A semiconductor device including a semiconductor substrate, an integrated circuit layer on the semiconductor substrate, first to nth metal wiring layers (where n is a positive integer) sequentially stacked on the semiconductor substrate and the integrated circuit layer, a first through via structure extending in a vertical direction toward the semiconductor substrate from a first via connection metal wiring layer, which is one of the second to nth metal wiring layers other than the first metal wiring layer, and passing through the semiconductor substrate, and a second through via structure being apart from the first through via structure, extending in a vertical direction toward the semiconductor substrate from a second via connection metal wiring layer, which is one of the second to nth metal wiring layers other than the first metal wiring layer, and passing through the semiconductor substrate may be provided.
Abstract:
Disclosed are semiconductor packages and methods of fabricating the same. The semiconductor package comprises a first wiring layer, a first semiconductor substrate on the first wiring layer, a first dielectric layer on the first semiconductor substrate, a landing pad in the first wiring layer, a through hole that penetrates the first semiconductor substrate, the first dielectric layer, and the first wiring layer and exposes the landing pad, the through hole including a first hole and a second hole on a bottom end of the first hole, the second hole having a maximum diameter less than a minimum diameter of the first hole, and a mask layer on an upper lateral surface of the through hole.
Abstract:
A semiconductor device includes a semiconductor substrate including at least one semiconductor structure, an interlayer insulating layer disposed on the semiconductor substrate, at least one first via structure penetrating the semiconductor substrate and the interlayer insulating layer, including a first region having a first width at an upper surface of the interlayer insulating layer and a second region extending from the first region and having a second width at a lower surface of the semiconductor substrate, wherein a side surface of the first region and a side surface of the second region have different profiles at a boundary between the first region and the second region, and at least one second via structure penetrating the semiconductor substrate and the interlayer insulating layer and having a third width greater than the first width at an upper surface of the interlayer insulating layer.
Abstract:
A bevel etching apparatus includes a chuck plate that is configured to receive a substrate, a lower ring surrounding a circumference of the chuck plate, a cover plate on the chuck plate, and an upper ring surrounding a circumference of the cover plate. The lower ring includes a ring base and a protrusion that extends upwardly from an edge of the ring base and surrounds a lower portion of a sidewall of the substrate.
Abstract:
A semiconductor device may include a first semiconductor substrate having a first surface and a second surface opposite to each other, a first circuit layer provided on the first surface of the first semiconductor substrate, a connection pad provided on the second surface of the first semiconductor substrate, and a first penetration via and a second penetration via penetrating the first semiconductor substrate and at least a portion of the first circuit layer. The first penetration via and the second penetration via may be provided in a first penetration hole and a second penetration hole, respectively. Each of the first and second penetration holes may include a first portion, a second portion, and a third portion. A width of the first portion of the first penetration hole may be smaller than a width of the first portion of the second penetration hole.
Abstract:
A method of manufacturing a semiconductor package including forming a photoresist pattern on a first surface of an interposer substrate. The interposer substrate includes an electrode zone and a scribe line zone. The interposer substrate is etched using the photoresist pattern as a mask to form a first opening and a second opening respectively on the electrode zone and the scribe line zone. An insulation layer and a conductive layer are formed on the first surface of the interposer substrate. A width of the second opening is smaller than a width of the first opening. The insulation layer contacts each of the first surface of the interposer substrate, an inner surface of the first opening, and an inner surface of the second opening.
Abstract:
Provided are semiconductor devices having through electrodes and methods of fabricating the same. The method includes providing a substrate including top and bottom surfaces facing each other, forming a hole and a gap extending from the top surface of the substrate toward the bottom surface of the substrate, the gap surrounding the hole and being shallower than the hole, filling the hole with an insulating material, forming a metal interconnection line on the top surface of the substrate on the insulating material, recessing the bottom surface of the substrate to expose the insulating material, removing the insulating material to expose the metal interconnection line via the hole, filling the hole with a conductive material to form a through electrode connected to the metal interconnection line, recessing the bottom surface of the substrate again to expose the gap, and forming a lower insulating layer on the bottom surface of the substrate.
Abstract:
Semiconductor devices are disclosed. The semiconductor device may include a semiconductor substrate having a first surface and a second surface opposite to each other and a pad trench formed at a portion of the second surface, a through-electrode penetrating the semiconductor substrate and protruding from a bottom surface of the pad trench. A buried pad may be disposed in the pad trench and may surround the through-electrode.
Abstract:
Provided are semiconductor devices with a through electrode and methods of fabricating the same. The methods may include forming a via hole at least partially penetrating a substrate, the via hole having an entrance provided on a top surface of the substrate, forming a via-insulating layer to cover conformally an inner surface of the via hole, forming a buffer layer on the via-insulating layer to cover conformally the via hole provided with the via-insulating layer, the buffer layer being formed of a material whose shrinkability is superior to the via-insulating layer, forming a through electrode to fill the via hole provided with the buffer layer, and recessing a bottom surface of the substrate to expose the through electrode.