Abstract:
Phenomena such as electromigration and stress-induced migration occurring in metal interconnects of devices such as integrated circuits are inhibited by use of underlying non-planarities. Thus the material underlying the interconnect is formed to have non-planarities typically of at least 0.02 μm in height and advantageously within 100 μm of another such non-planarity. Such non-planarities, it is contemplated, reduce grain boundary movement in the overlying interconnect with a concomitant reduction in void aggregation.
Abstract:
The present invention provides a semiconductor device, a method of manufacture therefor, and an integrated circuit including the same. In one aspect, the present invention provides a semiconductor device having a dielectric layer located over a conductive feature and a conductive via located within the dielectric layer and contacting the conductive feature. The semiconductor device, among other elements, may further include a dummy conductive via located proximate the conductive via and contacting the conductive feature. One of the intents of the dummy conductive via is to attempt to trap vacancies associated with the conductive feature or the conductive via.
Abstract:
Techniques for detecting damage on an integrated circuit die using a particle suspension solution are disclosed. The particles of the suspension solution preferentially attach to damaged regions on exposed dielectric films or other portions of the die. For example, one aspect of the invention is a method of detecting damage to a dielectric film used in fabricating a die of an integrated circuit. A particle suspension solution is applied to the die and damaged regions of the dielectric film are identified as areas having an accumulation of particles of the particle suspension solution.
Abstract:
A stress migration test structure is provided that can be used to detect stress migration defects in traces or conductors of integrated circuits. The stress migration test structure can be placed between die areas on a wafer, or on a die. On the die, a stress migration test structure can be placed in otherwise unused areas of a die such as between bond pads and the periphery of a die, in a layer beneath bond pads, in a region between the bond pads and the perimeter of standard area for circuit layout, or in regions in more than one level of the integrated circuit. The stress migration test structure may also be placed within the standard area for circuit layout and used, with some additional circuitry, as a stress migration test structure on an integrated circuit once the die is packaged. Obtaining information from the impedance segments of a stress migration test structure can be accomplished employing either a mechanical stepping or an electrical stepping technique.
Abstract:
The present invention provides a bond pad support structure for use in an integrated circuit having a bond pad located thereon. In one embodiment, the bond pad support structure comprises a support layer that is located below the bond pad and that has an opening formed therein. The bond pad support structure further includes a dielectric layer that is located on the conductive layer and that extends at least partially into the opening to form a bond pad support surface over at least a portion of the opening. The first bond pad support layer, in one embodiment, may comprise a conductive metal and the second bond pad support layer may comprise of a dielectric material. The present invention provides a unique bond pad structure wherein an opening within a first bond pad support layer is at least partially filled with a second bond pad support layer. It is believed that the inter-structural cooperation between these two layers provides a graded composite support structure that acts as a differential force transducer to buffer internal and bonding stresses within an integrated circuit.
Abstract:
An integrated circuit having an integrated circuit die and at least one height-sensing pad disposed on a top surface of the integrated circuit die and electrically isolated from the die circuitry. At least one bond pad is disposed on a top surface of the integrated circuit die and electrically connected to the die circuitry. The at least one bond pad is configured for wire-bonding to a lead of a leadframe utilizing a height coordinate of the at least one height-sensing pad.
Abstract:
An integrated circuit includes active circuitry and at least one bond pad. The at least one bond pad, in turn, comprises a metallization layer and a capping layer having one or more grooves. The metallization layer is in electrical contact with at least a portion of the active circuitry. In addition, the capping layer is formed over at least a portion of the metallization layer and is in electrical contact with the metallization layer. The grooves in the capping layer may be located only proximate to the edges of the bond pad or may run throughout the bond pad depending on the application.
Abstract:
An integrated circuit device incorporating a metallurgical bond to enhance thermal conduction to a heat sink. In a semiconductor device, a surface of an integrated circuit die is metallurgically bonded to a surface of a heat sink. In an exemplary method of manufacturing the device, the upper surface of a package substrate includes an inner region and a peripheral region. The integrated circuit die is positioned over the substrate surface and a first surface of the integrated circuit die is placed in contact with the package substrate. A metallic layer is formed on a second opposing surface of the integrated circuit die. A preform is positioned on the metallic layer and a heat sink is positioned over the preform. A joint layer is formed with the preform, metallurgically bonding the heat sink to the second surface of the integrated circuit die.
Abstract:
Embodiments of the invention provide methods and apparatus for managing temperature in integrated circuits. In accordance with an aspect of the invention, an integrated circuit comprises a monitored region defined by three or more edges. What is more, the integrated circuit comprises at least two temperature sensors for each of the three or more edges. The temperatures sensors are arranged along the three or more edges such that each edge has substantially the same arrangement of temperature sensors. Thermal management of the integrated circuit may be accomplished by modifying functional aspects of the integrated circuit in response to measurements provided by the temperature sensors.
Abstract:
An integrated circuit device incorporating a metallurgical bond to enhance thermal conduction to a heat sink. In a semiconductor device, a surface of an integrated circuit die is metallurgically bonded to a surface of a heat sink. In an exemplary method of manufacturing the device, the upper surface of a package substrate includes an inner region and a peripheral region. The integrated circuit die is positioned over the substrate surface and a first surface of the integrated circuit die is placed in contact with the package substrate. A metallic layer is formed on a second opposing surface of the integrated circuit die. A preform is positioned on the metallic layer and a heat sink is positioned over the preform. A joint layer is formed with the preform, metallurgically bonding the heat sink to the second surface of the integrated circuit die.