Abstract:
Reactive nanocomposites, foams, and structures comprising functionalized metal nanoparticles that are incorporated into a fluorinated polymer matrix using an in-situ polymerization process and methods of making and using the same. The reactive nanocomposites, foams, and structures according to the present invention demonstrate enhanced mechanical properties due to the direct chemical integration of the nano-metal fuel particles into the fluoropolymer matrix. In addition, the reactive nanocomposites, foams, and structures may be processed using conventional polymer processing and may be used to fabricate materials such as reactive liners, casings, and other components and inserts. The intense heat produced during reaction may further be used in a variety of applications such as disinfection, decontamination, and/or destruction.
Abstract:
Methods of forming metal nanoparticle decorated carbon nanotubes are provided. The methods include mixing a metal precursor with a plurality of carbon nanotubes to form a metal precursor-carbon nanotubes mixture. The methods also include exposing the metal precursor-carbon nanotubes mixture to electromagnetic radiation to deposit metal nanoparticles on a major surface of the carbon nanotubes.
Abstract:
Methods of providing a corrosion-resistant plating on a steel bumper are provided. A galvanized zinc layer is deposited over a steel substrate. A plurality of nickel layers is deposited over the zinc layer. The plurality of zinc layers has at least a first porosity and a second porosity. A chrome layer is applied over the plurality of nickel layers. The porous nickel layer is immediately adjacent the chrome layer such that a stress applied to the chrome layer is distributed over the porous nickel layer. The porous nickel layer delocalizes a stress applied at an impact area to a dispersed area and the dispersed area is larger than the impact area.
Abstract:
Methods of pressure coating a target surface of an article comprising one or more grooves formed in an outer surface of an article include fluidly connecting a pressure masker comprising a pressurized masking fluid to one or more coolant supply holes on a first side of the article. The one or more coolant supply holes in fluidic communication with the one or more grooves. Passing the pressurized masking fluid through the one or more grooves from the first side to a second side comprising the target surface at a pressure less than the coating pressure of the coating material, and, coating the target surface with the coating material to allow the coating material to bridge over the one or more grooves and form one or more micro-channels. The pressurized masking fluid passing through the one or more grooves prevents the coating material from permanently altering a cross sectional area of the one or more grooves along its length.
Abstract:
The present invention relates to a method for treating a block copolymer solution, wherein the method comprises: providing a solution comprising a block copolymer in a non aqueous solvent; and, treating the solution to remove metals using an ion exchange resin. The invention also relates to a method of forming patterns using the treated block copolymer.
Abstract:
The present invention relates to a method for treating a block copolymer solution, wherein the method comprises: providing a solution comprising a block copolymer in a non aqueous solvent; and, treating the solution to remove metals using an ion exchange resin. The invention also relates to a method of forming patterns using the treated block copolymer.
Abstract:
Disclosed in this specification is a method for coating a substrate to prevent dewetting. A suspension of nanoparticles is deposited onto the substrate to produce a nanoparticle layer. The nanoparticle layer is then coated with a monomer. The monomer polymerizes on the nanoparticle layer to produce a polymeric layer.
Abstract:
The invention relates to a process for producing fiber-reinforced flat semifinished products (3) based on a polyamide matrix, comprising the following steps: (a) saturation of textile structures (15) with a mixture comprising molten lactam, catalyst, and optionally activator, (b) cooling of the saturated textile structures (25), and (c) finishing of the cooled textile structures to give the fiber-reinforced flat semifinished product (3). The invention further relates to a process for producing a component made of the fiber-reinforced flat semifinished product.
Abstract:
Block copolymers can be self-assembled and used in methods as described herein for sub-lithographic patterning, for example. The block copolymers can be diblock copolymers, triblock copolymers, multiblock copolymers, or combinations thereof. Such methods can be useful for making devices that include, for example, sub-lithographic conductive lines.
Abstract:
Block copolymers can be self-assembled and used in methods as described herein for sub-lithographic patterning, for example. The block copolymers can be diblock copolymers, triblock copolymers, multiblock copolymers, or combinations thereof. Such methods can be useful for making devices that include, for example, sub-lithographic conductive lines.