Abstract:
An electron gun with a truncated-cone-shaped cathode with uniform emission current density is efficiently manufactured. A manufacturing method of a cathode electron gun equipped with a supply source for diffusing oxide of a metal element on a single crystal needle of tungsten or molybdenum includes steps of forming a truncated-cone-shape having a flat plane at a single crystal edge serving as the cathode by machining beforehand, thereafter thinning and removing a front layer of the flat plane by a focused gallium ion beam, and re-flattening it.
Abstract:
There is provided an iridium tip including a pyramid structure having one {100} crystal plane as one of a plurality of pyramid surfaces in a sharpened apex portion of a single crystal with orientation. The iridium tip is applied to a gas field ion source or an electron source. The gas field ion source and/or the electron source is applied to a focused ion beam apparatus, an electron microscope, an electron beam applied analysis apparatus, an ion-electron multi-beam apparatus, a scanning probe microscope or a mask repair apparatus.
Abstract:
A tip of an electron beam source includes a core carrying a coating. The coating is formed from a material having a greater electrical conductivity than a material forming the surface of the core.
Abstract:
Provided is a method for manufacturing a field emission array with a carbon microstructure. The method includes: a photomask attachment step of attaching a photomask with a pattern groove to one surface of a transparent substrate; a photoresist attachment step of attaching a negative photoresist to one surface of the photomask; an exposure step of irradiating light toward the opposite surface of the transparent substrate from the photomask to cure a portion of the negative photoresist with the light irradiated on the negative photoresist through the pattern groove; a developing step of removing an uncured portion of the negative photoresist while leaving the cured portion of the negative photoresist as a microstructure; a pyrolysis step of heating and carbonizing the microstructure thus obtained; and a cathode attachment step of attaching a voltage-supplying cathode to the surface of the transparent substrate on which the microstructure is formed.
Abstract:
Provided is a method for manufacturing a field emission array with a carbon microstructure. The method includes: a photomask attachment step of attaching a photomask with a pattern groove to one surface of a transparent substrate; a photoresist attachment step of attaching a negative photoresist to one surface of the photomask; an exposure step of irradiating light toward the opposite surface of the transparent substrate from the photomask to cure a portion of the negative photoresist with the light irradiated on the negative photoresist through the pattern groove; a developing step of removing an uncured portion of the negative photoresist while leaving the cured portion of the negative photoresist as a microstructure; a pyrolysis step of heating and carbonizing the microstructure thus obtained; and a cathode attachment step of attaching a voltage-supplying cathode to the surface of the transparent substrate on which the microstructure is formed.
Abstract:
This invention relates to heating apparatus and methods with particular applications for growing a nanofibre, and to nanotips fabricated by such methods and apparatus. Embodiments of the invention can be implemented to provide nanotips for electron gun sources and scanning probe microscopy. A nanotip fabrication apparatus includes a heater for heating an object in the presence of an electric field. The heater comprises: a substantially planar electrically conductive heating element configured to define at least one aperture; a support to mount the heated object such that it protrudes through said aperture; and at least one electrical connection to said heating element. In use, the heating element can be biased by said at least one electrical connection such that the electric field in the vicinity of the object is substantially perpendicular to the plane of the element.
Abstract:
A field-emission type electron source includes (i) a single-crystal tungsten rod having a sharpened terminus and (ii) a mass of ZrO formed only on a portion of the surface, or the entire surface, of the sharpened terminus. In preferred design, the single-crystal tungsten rod is placed in a gaseous medium that consists of oxygen and a non-oxygen gas. The molar ratio between oxygen and the non-oxygen gas is greater than 1:1.
Abstract:
There is provided an iridium tip including a pyramid structure having one {100} crystal plane as one of a plurality of pyramid surfaces in a sharpened apex portion of a single crystal with orientation. The iridium tip is applied to a gas field ion source or an electron source. The gas field ion source and/or the electron source is applied to a focused ion beam apparatus, an electron microscope, an electron beam applied analysis apparatus, an ion-electron multi-beam apparatus, a scanning probe microscope or a mask repair apparatus.
Abstract:
A field-emission electron gun including an electron emission tip, an extractor anode, and a mechanism creating an electric-potential difference between the emission tip and the extractor anode. The emission tip includes a metal tip and an end cone produced by chemical vapor deposition on a nanofilament, the cone being aligned and welded onto the metal tip. The electron gun can be used for a transmission electron microscope.
Abstract:
A tip of an electron beam source includes a core carrying a coating. The coating is formed from a material having a greater electrical conductivity than a material forming the surface of the core.