Abstract:
A semiconductor device and the method of manufacturing the same are provided. The semiconductor device comprises a well region, a first doped region, a drain region, a source region and a gate electrode. The first doped region of a first conductivity type is located at a first side within the well region. The drain region of the first conductivity type is within the first doped region. The source region of the first conductivity type is at a second side within the well region, wherein the second side being opposite to the first side. The gate electrode is over the well region and between the source region and the drain region. A surface of the drain region and a surface of the source region define a channel and the surface of the source region directly contacts the well region.
Abstract:
A signal processing circuit whose power consumption can be suppressed is provided. In a period during which a power supply voltage is not supplied to a storage element, data stored in a first storage circuit corresponding to a nonvolatile memory can be held by a first capacitor provided in a second storage circuit. With the use of a transistor in which a channel is formed in an oxide semiconductor layer, a signal held in the first capacitor is held for a long time. The storage element can accordingly hold the stored content (data) also in a period during which the supply of the power supply voltage is stopped. A signal held by the first capacitor can be converted into the one corresponding to the state (the on state or off state) of the second transistor and read from the second storage circuit. Consequently, an original signal can be accurately read.
Abstract:
An object of the present invention is to provide a semiconductor device combining transistors integrating on a same substrate transistors including an oxide semiconductor in their channel formation region and transistors including non-oxide semiconductor in their channel formation region. An application of the present invention is to realize substantially non-volatile semiconductor memories which do not require specific erasing operation and do not suffer from damages due to repeated writing operation. Furthermore, the semiconductor device is well adapted to store multivalued data. Manufacturing methods, application circuits and driving/reading methods are explained in details in the description.
Abstract:
One object is to have stable electrical characteristics and high reliability and to manufacture a semiconductor device including a semi-conductive oxide film. Film formation is performed by a sputtering method using a target in which gallium oxide is added to a material that is easy to volatilize compared to gallium when the material is heated at 400° C. to 700° C. like zinc, and a formed film is heated at 400° C. to 700° C., whereby the added material is segregated in the vicinity of a surface of the film and the oxide is crystallized. Further, a semi-conductive oxide film is deposited thereover, whereby a semi-conductive oxide having a crystal which succeeds a crystal structure of the oxide that is crystallized by heat treatment is formed.
Abstract:
Disclosed is a semiconductor device including two oxide semiconductor layers, where one of the oxide semiconductor layers has an n-doped region while the other of the oxide semiconductor layers is substantially i-type. The semiconductor device includes the two oxide semiconductor layers sandwiched between a pair of oxide layers which have a common element included in any of the two oxide semiconductor layers. A double-well structure is formed in a region including the two oxide semiconductor layers and the pair of oxide layers, leading to the formation of a channel formation region in the n-doped region. This structure allows the channel formation region to be surrounded by an i-type oxide semiconductor, which contributes to the production of a semiconductor device that is capable of feeding enormous current.
Abstract:
A semiconductor device including a transistor is provided. The transistor includes a gate electrode, a first insulating film over the gate electrode, a second insulating film over the first insulating film, an oxide semiconductor film over the second insulating film, a source electrode and a drain electrode electrically connected to the oxide semiconductor film, a third insulating film over the source electrode, and a fourth insulating film over the drain electrode. A fifth insulating film including oxygen is provided over the transistor. The third insulating film includes a first portion, the fourth insulating film includes a second portion, and the fifth insulating film includes a third portion. The amount of oxygen molecules released from each of the first portion and the second portion is smaller than the amount of oxygen molecules released from the third portion when the amounts are measured by thermal desorption spectroscopy.
Abstract:
One object is to provide a new semiconductor device whose standby power is sufficiently reduced. The semiconductor device includes a first power supply terminal, a second power supply terminal, a switching transistor using an oxide semiconductor material and an integrated circuit. The first power supply terminal is electrically connected to one of a source terminal and a drain terminal of the switching transistor. The other of the source terminal and the drain terminal of the switching transistor is electrically connected to one terminal of the integrated circuit. The other terminal of the integrated circuit is electrically connected to the second power supply terminal.
Abstract:
A transistor with excellent electrical characteristics (e.g., on-state current, field-effect mobility, or frequency characteristics) is provided. The transistor includes an oxide semiconductor layer including a channel formation region, a first gate electrode, a second gate electrode, a source electrode, and a drain electrode. The oxide semiconductor layer is between the first gate electrode and the second gate electrode. The oxide semiconductor layer has a pair of side surfaces in contact with the source electrode and the drain electrode and includes a region surrounded by the first gate electrode and the second gate electrode without the source electrode and the drain electrode interposed therebetween.
Abstract:
A method of fabricating fluxgate devices to measure the magnetic field in two orthogonal, in plane directions, by using a composite-anisotropic magnetic core structure.
Abstract:
A thin file transistor includes a gate electrode, a source electrode, a drain electrode, a gate-insulating layer, and an oxide semiconductor layer. The oxide semiconductor layer includes indium-gallium-zinc oxide with a formula of InxGayZnzOw, in which x, y and z satisfy the following formulas 1.5≦(y/x)≦2 and 1.5≦(y/z)≦2. The gate-insulating layer is positioned between the gate electrode and the oxide semiconductor layer. The source electrode and the drain electrode are respectively connected to two different sides of the oxide semiconductor layer.