Abstract:
A mother board mounts a memory module via a plug-socket coupling, wherein the edge of the memory module has a plug member mounted on a socket member of the mother board. The mother board has a plurality of abutment members abutting the edge surface of the bottom edge of the memory module for which the plug is formed. The abutment members act as ground terminals for connecting the ground layer of the memory module to the ground layer of the mother board, and also act as heat radiation members.
Abstract:
In a structure for attaching a circuit board terminal to a circuit board, stress is minimized in a soldered portion on a circuit section upon inserting and drawing an electrical element into and from the circuit board. The attaching structure including a holding member mounted on and secured to a circuit board, a bus bar that has a base portion supported on the holding member and a leg portion that passes one or more through-holes and to be soldered on a circuit section, and a circuit board terminal that has a base portion to be connected to the bus bar and a connection portion adapted to be coupled to a terminal of an electrical element. The bus bar is provided on the base portion with elastic tongue pieces that can contact elastically with a circuit board terminal. The circuit board terminal is connected through the bus bar to the circuit section.
Abstract:
An electronic part module which is configured to electrically connect an electronic component to a motherboard via a socket, including a conversion board and a sub board. The conversion board is configured to convert a signal from the electronic component and has a plurality of pins projected from the conversion board. The plurality of pins are configured to contact the socket. The sub board is provided between the conversion board and the socket and has a plurality of holes each having a diameter same as or larger than that of each of the plurality of pins which pass through the plurality of holes, respectively.
Abstract:
A socketable ball grid array structure is disclosed which comprises mechanically rigid (compared to solder alloys) balls coated with noble contact metals joined to the chip carrier terminals by means of a novel electrically conducting adhesive. Because of the nature of the filler that includes conducting particles with a fusible coating and the appropriate selection of the polymer resin used in the adhesive, the balls are attached to the module in a compliant and resilient manner while leaving the majority of the bottom surface of the balls pristine. The array of balls can therefore be plugged into mating sockets in a printed circuit board forming a demountable contact. This facilitates easy removal of the socketable BGA from a board for repair or upgrade purposes as well as allows ease of plugging and unplugging of these BGA's into test and burn-in boards.
Abstract:
A computer baseboard providing localized support for high pin count, high density components. The baseboard includes a first circuit board capable of supporting low pin count electrical components. The first circuit board has a surface onto which the low pin count electrical components are mounted, and an area to which a second, smaller, circuit board is connected in a parallel arrangement with the first circuit board. The second circuit board has a first surface onto which high pin count electrical components are mounted, and a second surface physically and electrically connected to the area on said first substrate. The first and second circuit boards together provide support for electrical components having higher pin counts and densities than the first circuit board can support individually, such as high performance microprocessors and chipsets. The first circuit board may be a low circuit density substrate while the second circuit board is a high circuit density substrate or multiple substrate layer board. Additionally, the second circuit board can be constructed of materials with better electrical characteristics, such as Cyanate Ester or other material having a low relative permeability, providing an advantage in meeting the tight timing characteristics of new, high performance microprocessors and chipsets.
Abstract:
An automotive junction box for controlling the flow of power and control signals throughout the interior of an automobile having controllable features. The junction box includes a housing and a first printed circuit board disposed within the housing. The first printed circuit board having a plurality of first conductive elements with a first thickness for carrying power from and through the housing. The first printed circuit board further having a plurality of second conductive elements with a second thickness for relaying control signals from the housing for actuating the features. The junction box further includes componentry attaching to the board and/or the conductive elements. As a result of using these two conducting element thicknesses, the junction box operates as an electrical distribution center and a center for electronic functions.
Abstract:
A PGA connector for a microprocessor has a multilayer base board assembly with alternating conductive and dielectric layers of preselected thicknesses through which signal pins, current source pins and a grounding pin extend. The signal pins are insulated from the conductive layers and the current and grounding pin are connected to preselected conductive layers. A series of connecting apertures formed by holes with respective conductive linings extend through the layers at selected locations between pins to interconnect selected conductive layers. The connecting apertures interconnect all conductive layers of the base board or, in another example, alternately positioned connecting apertures interconnect only respective different sets of alternately positioned conductive layers of the base board enabling improved shielding and impedance regulation and matching.
Abstract:
The present invention discloses a method and apparatus for conductively transferring heat away from electrical devices located on daughter boards attached to mother boards. The preferred method involves the steps of conductively transferring heat from each electrical device to a conductive layer located within the daughter board, transferring heat from the conductive layer within the daughter board to a conductive structure located on the surface of the daughter board, and transferring heat from the conductive structure to a cooling surface located on the cold plate. The preferred apparatus includes a mother board, a cold plate adjacent the mother board and attached to the mother board, a daughter board with an electrical device attached thereto, the daughter board attached to the mother board opposite the cold plate. The daughter board lies in a plane which is adjacent and substantially parallel to the plane of the mother board. Also included is conductive heat transfer means for conductively transferring heat energy from the electrical device on the daughter board to the cold plate.
Abstract:
A surface mounting method for mounting an electronic part having a great number of contacts onto a circuit board. A jig provided with dummy contacts is prepared whose size, number and arrangement are substantially the same as those of contacts of an electronic part to be mounted on a circuit board. The dummy contacts of the jig are then fitted with mating contacts which are to be fitted with the contacts of the electronic part. Thereafter, the jig provided with the dummy contacts fitted with the mating contacts is mounted onto the circuit board at a predetermined position thereon. The mating contacts are then mounted and fixed onto the circuit board. The jig is then removed from the circuit board. The contacts of the electronic part are then fitted with the mating contacts fixed to the circuit board. As an alternative, double ended socket contact members are prepared, each having socket contacts on both ends. Pin contacts of a circuit board are fitted in the socket contacts of the double ended socket contact members on their one ends and then pin contacts of an electronic part are fitted in the socket contacts of the members on their other ends.
Abstract:
A retainer for removable components that plug into a printed circuit board retains the removable component in an associated sockets on a printed circuit board. The retainer has the form of a clip including a retaining surface that applies a retaining force to the component. The retaining force is largely a spring force that directs the leads into the associated sockets by applying pressure to the top of the component. The retainer further has a positioning surface that positions the retaining surface in association with the component. This is done by the positioning surface engaging the exposed exterior surface of the associated sockets. A connecting surface connects the retaining surface to the positioning surface around the circuit board. In the preferred embodiment, the component is a crystal oscillator that plugs into the printed circuit board. Such crystal oscillators are removable to permit changing the operating frequency of an associated microwave transmission circuit.