Abstract:
A plasma process apparatus capable of operation significantly above 13.56 MHz can produce reduced self-bias voltage of the powered electrode to enable softer processes that do not damage thin layers that are increasingly becoming common in high speed and high density integrated circuits. A nonconventional match network is used to enable elimination of reflections at these higher frequencies. Automatic control of match network components enables the rf frequency to be adjusted to ignite the plasma and then to operate at a variable frequency selected to minimize process time without significant damage to the integrated circuit.
Abstract:
An electrostatic chuck includes a pedestal having a metallic upper surface, and a layer of a porous dielectric material formed on said upper surface of the pedestal. The dielectric layer is impregnated with a plasma-resistant sealant.
Abstract:
A plasma reactor preferably uses a split electrode which surrounds a plasma dome region of the reactor, is driven by high frequency energy selected from VHF and UHF and produces an electric field inside the electrode, parallel to the wafer support electrode. A static axial magnetic field may be used which is perpendicular to the electric field. The above apparatus generates a high density, low energy plasma inside a vacuum chamber for etching metals, dielectrics and semiconductor materials. Relatively lower frequency, preferably RF frequency, auxiliary bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various etch processes, deposition processes and combined etch/deposition processes (for example, sputter/facet deposition) are disclosed. The triode (VHF/UHF split electrode plus RF wafer support electrode) provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
A method of dechucking a workpiece from an electrostatic chuck. The method adaptively produces a dechucking voltage for canceling any unpredictable residual electrostatic fields between a workpiece and the electrostatic chuck. The method contains the steps of (a) applying a lifting force to the workpiece; (b) altering the chucking voltage; (c) measuring the lifting force; (d) comparing the measured lifting force to a threshold level; and, depending on the result of the comparison, either (e) maintaining the chucking voltage at its present level for a predefined period of time and physically dechucking the workpiece or (f) repeating steps (b), (c), (d) and (e).
Abstract:
A plasma process apparatus capacitor operation significantly above 13.56 MHz can produce reduced self-bias voltage of the powered electrode to enable softer processes that do not damage thin layers that are increasingly becoming common in high speed and high density integrated circuits. A nonconventional match network is used to enable elimination of reflections at these higher frequencies. Automatic control of match network components enables the rf frequency to be adjusted to ignite the plasma and then to operate at a variable frequency selected to minimize process time without significant damage to the integrated circuit.
Abstract:
The disclosure discusses impedance matching circuits based on parallel-resonant L-C tank circuits, and describes a low-loss design for an adjustable inductance element suitable for use in these parallel tank circuits. The application of an impedance matching circuit to a plasma process is also disclosed; in this context, a local impedance transformation circuit is used to improve power transfer to the plasma source antenna.
Abstract:
A plasma processing reactor is disclosed which incorporates an integral co-axial transmission line structure that effects low loss, very short transmission line coupling of ac power to the plasma chamber and therefore permits the effective use of VHF/UHF frequencies for generating a plasma. The use of VHF/UHF frequencies within the range 50-800 megahertz provides commercially viable processing rates (separate and simultaneous etching and deposition) and substantial reduction in sheath voltages compared to conventional frequencies such as 13.56 MHz. As a result, the probability of damaging electrically sensitive small geometry devices is reduced.
Abstract:
A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distributor, a pump coupled to the plasma chamber, a workpiece support to hold a workpiece, an intra-chamber electrode assembly comprising a plurality of filaments extending laterally through the plasma chamber, each filament including a conductor surrounded by a cylindrical insulating shell, the plurality of filaments including a first multiplicity of filaments and a second multiplicity of filaments arranged in an alternating pattern with the first multiplicity of filaments, a first bus coupled to the first multiplicity of filaments and a second bus coupled to the second multiplicity of filaments, an RF power source to apply RF signal the intra-chamber electrode assembly, and at least one RF switch configured to controllably electrically couple and decouple the first bus from one of i) ground, ii) the RF power source, or iii) the second bus.
Abstract:
A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distributor to deliver a processing gas to the plasma chamber, a pump coupled to the plasma chamber to evacuate the chamber, a workpiece support to hold a workpiece, and an intra-chamber electrode assembly that includes a plurality of filaments extending laterally through the plasma chamber between a ceiling of the plasma chamber and the workpiece support. Each filament including a conductor surrounded by a cylindrical insulating shell. The plurality of filaments includes a first multiplicity of filaments and a second multiplicity of filaments arranged in an alternating pattern with the first multiplicity of filaments. An RF power source is configured to apply a first RF input signal to the first multiplicity of filaments.
Abstract:
Specialty ceramic materials which resist corrosion/erosion under semiconductor processing conditions which employ a corrosive/erosive plasma. The corrosive plasma may be a halogen-containing plasma. The specialty ceramic materials have been modified to provide a controlled electrical resistivity which suppresses plasma arcing potential.