Abstract:
A semiconductor device may include a substrate, source and drain regions in the substrate, a recessed epitaxial channel layer in the substrate between the source and drain regions, and a high-K gate dielectric layer overlying the recessed epitaxial channel layer. The semiconductor device may further include a gate electrode overlying the high-K gate dielectric layer, a dielectric cap layer in contact with top and sidewall portions of the gate electrode, the dielectric cap layer having a lower dielectric constant than the high-K gate dielectric layer, and source and drain contacts coupled to the source and drain regions.
Abstract:
A method of making a semiconductor device patterns a first fin in a pFET region, and patterns a second fin in an nFET region. A plurality of conformal microlayers containing a straining material are deposited on the first and second fins. A protective cap material is formed on the first fin, and the conformal layers are selectively removed from the second fin. The straining material is then thermally diffused into the first fin. The protective cap material is removed from the first fin after the thermal annealing and after the conformal micro layers are selectively removed from the second fin.
Abstract:
A method for manufacturing a hybrid SOI/bulk substrate, including the steps of starting from an SOI wafer comprising a single-crystal semiconductor layer called SOI layer, on an insulating layer, on a single-crystal semiconductor substrate; depositing on the SOI layer at least one masking layer and forming openings crossing the masking layer, the SOI layer, and the insulating layer, to reach the substrate; growing by a repeated alternation of selective epitaxy and partial etching steps a semiconductor material; and etching insulating trenches surrounding said openings filled with semiconductor material, while encroaching inwards over the periphery of the openings.
Abstract:
Methods for semiconductor fabrication include forming a well in a semiconductor substrate. A pocket is formed within the well, the pocket having an opposite doping polarity as the well to provide a p-n junction between the well and the pocket. Defects are created at the p-n junction such that a leakage resistance of the p-n junction is decreased.
Abstract:
A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
Abstract:
A semiconductor subassembly, a modular sidewall element having modular dimensions that accommodates placement of the semiconductor subassembly in a modular layout and a semiconductor substrate base element coupled to the modular sidewall element. The semiconductor substrate base element has at least one semiconductor element with a layout sized to be accommodated by modular dimensions of the modular sidewall element and the semiconductor substrate base element configured to form a base of the semiconductor subassembly.
Abstract:
Mutual capacitances between regions of a MOS device become substantial factors that limit the speed and performance of the device as the device dimensions are reduced in size. A MOS transistor with a shielding structure formed above the gate is described. The shielding structure is connected to ground and is configured to reduce at least some of these mutual capacitances.
Abstract:
A method that includes forming a first layer having a first dopant concentration, the first layer having an integrated circuit region and a micro-electromechanical region and doping the micro-electromechanical region of the first layer to have a second dopant concentration is presented. The method includes forming a second layer having a third dopant concentration overlying the first layer, doping the second layer that overlies the micro-electromechanical region to have a fourth dopant concentration, forming a micro-electromechanical structure in the micro-electromechanical region using the first and second layers, and forming active components in the integrated circuit region using the second layer.
Abstract:
A method of assembling a multi-chip electronic device into a thin electronic package entails inverting a flip-chip die arrangement over a hollow substrate, stacking additional dies on the hollow substrate to form a multi-chip electronic device, and encapsulating the multi-chip electronic device. Containment of the encapsulant can be achieved by joining split substrate portions, or by reinforcing a hollow unitary substrate, using a removable adhesive film. Use of the removable adhesive film facilitates surrounding the multi-chip electronic device with the encapsulant. The adhesive film can also prevent encapsulant from creeping around the substrate to an underside of the substrate that supports solder ball pads for subsequent attachment to a ball grid array (BGA) or a land grid array (LGA).
Abstract:
A provisioning device is provided that communicates over a trusted out-of-band communications channel to digital electronic devices in order to exchange security data such as passwords and private or public keys, thereby establishing a secure communications network between the devices.