Abstract:
Trench-confined selective epitaxial growth process in which epitaxial growth of a semiconductor device layer proceeds within the confines of a trench. In embodiments, a trench is fabricated to include a pristine, planar semiconductor seeding surface disposed at the bottom of the trench. Semiconductor regions around the seeding surface may be recessed relative to the seeding surface with Isolation dielectric disposed there on to surround the semiconductor seeding layer and form the trench. In embodiments to form the trench, a sacrificial hardmask fin may be covered in dielectric which is then planarized to expose the hardmask fin, which is then removed to expose the seeding surface. A semiconductor device layer is formed from the seeding surface through selective heteroepitaxy. In embodiments, non-planar devices are formed from the semiconductor device layer by recessing a top surface of the isolation dielectric. In embodiments, non-planar devices CMOS devices having high carrier mobility may be made from the semiconductor device layer.
Abstract:
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
Abstract:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
Abstract:
A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
Abstract:
Nanowire-based gate all-around transistor devices having one or more active nanowires and one or more inactive nanowires are described herein. Methods to fabricate such devices are also described. One or more embodiments of the present invention are directed at approaches for varying the gate width of a transistor structure comprising a nanowire stack having a distinct number of nanowires. The approaches include rendering a certain number of nanowires inactive (i.e. so that current does not flow through the nanowire), by severing the channel region, burying the source and drain regions, or both. Overall, the gate width of nanowire-based structures having a plurality of nanowires may be varied by rendering a certain number of nanowires inactive, while maintaining other nanowires as active.
Abstract:
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
Abstract:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
Abstract:
A multi-gate device having a T-shaped gate structure is generally described. In one example, an apparatus includes a semiconductor substrate, at least one multi-gate fin coupled with the semiconductor substrate, the multi-gate fin having a gate region, a source region, and a drain region, the gate region being positioned between the source and drain regions, a gate dielectric coupled to the gate region of the multi-gate fin, a gate electrode coupled to the gate dielectric, the gate electrode having a first thickness and a second thickness, the second thickness being greater than the first thickness, a first spacer dielectric coupled to a portion of the gate electrode having the first thickness, and a second spacer dielectric coupled to the first spacer dielectric and coupled to the gate electrode where the second spacer dielectric is coupled to a portion of the gate electrode having the second thickness.
Abstract:
The present disclosure provides an apparatus and method for implementing a high hole mobility p-channel Germanium (“Ge”) transistor structure on a Silicon (“Si”) substrate. One exemplary apparatus may include a buffer layer including a GaAs nucleation layer, a first GaAs buffer layer, and a second GaAs buffer layer. The exemplary apparatus may further include a bottom barrier on the second GaAs buffer layer and having a band gap greater than 1.1 eV, a Ge active channel layer on the bottom barrier and having a valence band offset relative to the bottom barrier that is greater than 0.3 eV, and an AlAs top barrier on the Ge active channel layer wherein the AlAs top barrier has a band gap greater than 1.1 eV. Of course, many alternatives, variations and modifications are possible without departing from this embodiment.