Abstract:
A system and method are disclosed in which in a conventional non-grounding man-machine interface having no reaction base on the human body and for giving the existence of a virtual object and the impact force of a collision to a person, a haptic sensation of a torque, a force and the like can be continuously presented in the same direction, which cannot be presented by only the physical characteristic of a haptic sensation presentation device. In a haptic presentation device, the rotation velocity of at least one rotator in the haptic presentation device is controlled by a control device, and a vibration, a force or a torque as the physical characteristic is controlled, so that the user is made to conceive various haptic information of the vibration, force, torque or the like.
Abstract:
A silicon carbide vertical MOSFET having low ON-resistance and high blocking voltage is provided. For this, a first deposition film (2) of low concentration silicon carbide of a first conductivity type is formed on the surface of a high concentration silicon carbide substrate (1) of a first conductivity type. Formed on the first deposition film (2) is a second deposition film (31) that comprises a high concentration gate region of a second conductivity type, with a first region removed selectively. A third deposition film (32) formed on the second deposition film, which comprises a second region that is wider than the selectively removed first region, a high concentration source region (5) of a first conductivity type and a low concentration gate region (11) of a second conductivity type. A low concentration base region (4) of a first conductivity type is formed in contact with the first deposition film (2) in the first and second regions.
Abstract:
A carrier recovery unit is provided including: separation-and-output section that outputs separated symbol group formed into block; a priori state-estimation section that obtains a priori estimate acquired by estimating values processed this time from among values of intra-block frequency and central phase processed last time; provisional compensation section that provisionally compensates the phase of each separated symbol based on the a priori estimation phase; decision section that performs decision based on the reference signal for the symbol before decision, and obtains symbol after decision; error-estimation section that calculates the frequency and phase errors; a posteriori state-estimation section that obtains a posteriori estimate based on the frequency and phase errors; actual compensation section that actually compensates the phase based on the a posteriori estimation phase; and feedback processing section that feeds back the a posteriori estimate as the values processed last time to the a priori state estimation section.
Abstract:
A spin electronic memory of the present invention includes: a pair of electrodes 1, 2, recording layers 6a, 6b, and 6c between the electrodes 1 and 2, the recording layer being formed by laminating first alloy layer 5 and second alloy layer 4, the first alloy layer 5 being formed to contain any one of SbTe, Sb2Te3, BiTe, Bi2Te3, BiSe, and Bi2Se3 as a principal component and to have a thickness of 2 nm to 10 nm, the second alloy layer 4 being formed to contain an alloy expressed by general formula (1) as a principal component; and spin injection layer 7 formed with a magnetic material to inject a spin into the recording layer with the magnetic material being magnetized, M1-xTex (1) where M represents an atom selected from atoms of Ge, Al, and Si, and x represents a value of 0.5 or more and less than 1.
Abstract:
The purpose of the present invention is to provide a method for producing a high quality biodiesel fuel having excellent oxidation stability and few low-temperature deposits. This purpose can be achieved by the following: hydrogenating a biodiesel fuel so as to selectively convert unsaturated fatty acid monoglycerides and then removing fatty acid monoglycerides through precipitation; or using an adsorbent to further remove fatty acid monoglycerides to a high degree from the biodiesel fuel produced using the method mentioned above.
Abstract:
Provided is a method for forming a pattern of polyimide that is simpler and is more excellent in the pattern shape and in the dimensional accuracy in comparison with the conventional techniques of patterning polyimide, such as photolithography and laser processing. In a method for forming a micropattern of polyimide, which includes using as polyimide a solvent-soluble polyimide resin composition that is photosensitive and is moldable at a temperature of less than or equal to a glass-transition temperature; patterning the composition using thermal imprinting; and thermally curing the composition, ultraviolet irradiation is performed after the composition is released from a mold after a molding step.
Abstract:
A catalyst including, as effective ingredient, complex represented by Formula (1) which contains bidentate ligand including aromatic heterocyclic 5-membered ring having 2 or more nitrogen atoms, or represented by Formula (2) which contains bidentate ligand including: aromatic heterocyclic 5-membered ring having 2 or more nitrogen atoms; and 6-membered ring having 1 or more nitrogen atoms, isomer or salt of the complex: where M1 and M2 denote transition metal such as iridium; X1 to X16 each independently denote nitrogen or carbon; R1 to R13 denote, for example, hydrogen atom, alkyl group, or hydroxy group, provided that when Xi (where i denotes 13 to 16) is nitrogen, R1 is absent at position corresponding to the nitrogen; L1 and L2 denote, for example, an aromatic anionic ligand; Z1 and Z2 denote any ligand or are absent; and m and n denote positive integer, 0, or negative integer.
Abstract:
A ferroelectric device and a manufacturing method are provided. While holding a nonvolatile memory retention capability and a multiple rewriting endurance as the distinctive features of a ferroelectric device, the disclosed ferroelectric device is wider in memory window and more adaptively made microfiner than a conventional ferroelectric device that has used a ferroelectric mainly constituted of Sr—Bi—Ta—O as an oxide of strontium, bismuth and tantalum. Directly on or with intermediary of an insulator on a semiconductor there are layered a first ferroelectric and a conductor to form a gate stack, the first ferroelectric being mainly constituted of Sr—Ca—Bi—Ta—O as an oxide of strontium, calcium, bismuth and tantalum and being built up by a metal organic vapor deposition technique from a suitable film-forming raw material. The gate stack is heat-treated to cause the first ferroelectric to develop its ferroelectricity.
Abstract:
An apparatus of the present invention for producing aligned carbon nanotube aggregates is an apparatus for producing aligned carbon nanotube aggregates, the apparatus being configured to grow the aligned carbon nanotube aggregate by: causing a catalyst formed on a surface of a substrate to be surrounded by a reducing gas environment constituted by a reducing gas; heating at least either the catalyst or the reducing gas; causing the catalyst to be surrounded by a raw material gas environment constituted by a raw material gas; and heating at least either the catalyst or the raw material gas, at least either an apparatus component exposed to the reducing gas or an apparatus component exposed to the raw material gas being made from a heat-resistant alloy, and having a surface plated with molten aluminum.
Abstract:
A system includes: a splitter to branch an optical signal output by a wavelength-tunable light source into first to third optical signals; a first photodiode to perform an optical electrical conversion of the first optical signal transmitting a first etalon; a second photodiode to perform an optical electrical conversion of the second optical signal transmitting a second etalon, an FSR of the second etalon being identical to that of the first etalon, peak wavelengths of intensity of a transmitted light of the second etalon being different from those of the first etalon; a third photodiode to perform an optical electrical conversion of the third optical signal; and a controller to control the wavelength-tunable light source with use of a coefficient calculated by following formulas (1) or (2), Coefficient=(PD1−A·PD3)/(PD2−B·PD3) (1) and Coefficient=(PD2−B·PD3)/(PD1−A·PD3) (2).