Abstract:
A low power analog-to-digital converter configured to sense sensor signals may include a loop filter and a feedback digital-to-analog converter. The loop filter may have a loop filter input configured to receive an input current signal from a sensor and generate an output signal responsive to the input current signal. The feedback digital-to-analog converter may have a feedback output configured to generate a current-mode or charge-mode feedback output signal responsive to the output signal, the feedback output coupled to the loop filter input in order to combine the input current signal and the feedback output signal at the input.
Abstract:
In accordance with embodiments of the present disclosure, a method and apparatus for providing a digitized microphone signal to a digital processing device may include an analog signal path portion, a digital signal path portion, and a control circuit. The analog signal path portion may have an audio input configured to receive an analog input signal indicative of audio sounds incident upon an audio transducer. The digital signal path portion may have an analog-to-digital converter for converting the analog microphone signal to the digitized microphone signal. The control circuit may be configured to control a magnitude of the analog input signal or a derivative thereof in order to reduce audio distortion occurring in either or both of the analog signal path portion and the digital signal path portion.
Abstract:
An integrated circuit may have two signal paths: an open-loop modulator (which may comprise a digital-input Class-D amplifier) and a closed-loop modulator (which may comprise an analog-input Class-D amplifier). A control subsystem may be capable of selecting either of the open-loop modulator or the closed-loop modulator as a selected path based on one or more characteristics (e.g., signal magnitude) of an input audio signal. For example, for higher-magnitude signals, the closed-loop modulator may be selected while the open-loop modulator may be selected for lower-magnitude signals. In some instances, when the open-loop modulator is selected as the selected path, the closed-loop modulator may power off, which may reduce power consumption. In addition, one or more techniques may be applied to reduce or eliminate user-perceptible audio artifacts caused by switching between the open-loop modulator and the closed-loop modulator, and vice versa.
Abstract:
A personal audio device includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone is also provided proximate the speaker to provide an error signal indicative of the effectiveness of the noise cancellation. A secondary path estimating adaptive filter is used to estimate the electro-acoustical path from the noise canceling circuit through the transducer so that source audio can be removed from the error signal. Noise is injected so that the adaptation of the secondary path estimating adaptive filter can be maintained, irrespective of the presence and amplitude of the source audio. The noise is shaped by a noise shaping filter that has a response controlled in conformity with at least one parameter of the secondary path response.
Abstract:
In accordance with embodiments of the present disclosure, a multi-bit pulsed latch circuit for an integrated circuit design system may include a pulse generator and a plurality of latches. The pulse generator may be configured to generate pulses. The plurality of latches may operate as storage elements and are coupled to the pulse generator in a manner so that the multi-bit pulsed latch circuit provides functionality of at least two flip flop elements, wherein the multi-bit pulsed latch circuit can replace the at least two flip flop elements that normally would be used by the integrated circuit design system.
Abstract:
In accordance with methods and systems of the present disclosure, a processing circuit may implement at least one of: a feedback filter having a response that generates at least a portion of an anti-noise component from a playback corrected error, the playback corrected error based on a difference between the error microphone signal and a secondary path estimate; and a feedforward filter having a response that generates at least a portion of the anti-noise signal from a reference microphone signal. The processing circuit may also implement a secondary path estimate filter configured to model an electro-acoustic path of a source audio signal and have a response that generates a secondary path estimate from the source audio signal and a secondary path estimate performance monitor for monitoring performance of the secondary path estimate filter in modeling the electro-acoustic path.
Abstract:
In accordance with embodiments of the present disclosure, a control circuit may be configured to, responsive to an indication to switch between gain modes of a signal path having an analog path portion and a digital signal path portion, switch a selectable analog gain of the analog path portion between a first analog gain and a second analog gain, switch a selectable digital gain of the digital signal path portion between a first digital gain and a second digital gain, wherein the product of the first analog gain and the first digital gain is approximately equal to the product of the second analog gain and the second digital gain, and control an analog response of the signal path to reduce the occurrence of audio artifacts present in the output signal as a result of the switch between gain modes of the signal path.A signal path may have an analog path portion and a digital signal path portion. The digital portion may have a selectable digitally-controlled gain and may be configured to convert a digital audio input signal into an analog input signal in conformity with the selectable digitally-controlled gain, the digital signal path portion comprising a modulator including a forward path and a feedback path. The forward path may include a loop filter for generating a filtered signal responsive to the digital audio input signal and a feedback signal, a quantizer responsive to the filtered signal for generating a quantized signal, and a first gain element configured to apply the selectable digitally-controlled gain to a signal within the forward path. The feedback path may be configured to generate the feedback signal responsive to the quantized signal, the feedback path including a second gain element having a gain inversely proportional to the selectable digitally-controlled gain.
Abstract:
A DC servo loop may track DC offset changes of an input signal and apply feedback to amplifiers to adjust a DC offset of the input signal. The DC servo loop may include digital loop tracking and analog loop tracking components. The digital loop tracking components may track small changes in the DC offset. When the DC offset exceeds a certain threshold, analog loop tracking may be activated to apply feedback to the amplifiers to adjust the DC offset. The adjustments to the DC offset may be delayed until an amplitude of the input signal exceeds a threshold to reduce contribution to noise in the input signal.
Abstract:
A charge pump power supply may comprise a plurality of capacitors and a switching circuit for switching the capacitors to provide a first voltage or a second voltage in accordance with the select input. The charge pump power supply may have a signal polarity input for indicating a polarity of an output audio signal. Switches for switching one or more capacitors providing a first polarity voltage in a then-current operating mode may be configured to switch at a greater frequency than switches for switching one or more capacitors providing a second polarity voltage responsive to the signal polarity input indicating a positive polarity of the output audio signal. Switches for switching one or more capacitors providing the first polarity voltage in a then-current operating mode are configured to switch at a lesser frequency than switches for switching one or more capacitors providing the second polarity voltage responsive to the signal polarity input indicating a negative polarity of the output audio signal.
Abstract:
In accordance with embodiments of the present disclosure, an audio processing circuit for use in an audio device may perform non-linear acoustic echo cancellation by predicting a displacement associated with an audio speaker, wherein such prediction takes into account a nonlinear response of the audio speaker with a mathematical model that calculates the predicted displacement of the audio speaker as a function of a current signal associated with the audio speaker using a time-varying difference equation, wherein coefficients of the difference equation are based on a set of physical parameters of the audio speaker. From the predicted displacement, the processing circuit may calculate a predicted acoustic output of the audio speaker, which may be used to generate a reference signal to an acoustic echo canceller.