Avalanche quantum intersubband transition semiconductor laser
    22.
    发明申请
    Avalanche quantum intersubband transition semiconductor laser 审中-公开
    雪崩量子子带内过渡半导体激光器

    公开(公告)号:US20070064757A1

    公开(公告)日:2007-03-22

    申请号:US11492920

    申请日:2006-07-26

    CPC classification number: H01S5/3402 B82Y20/00

    Abstract: Provided is an avalanche quantum intersubband transition semiconductor laser. The laser includes: a first cladding layer, a first wave guide layer, an active region, a second wave guide layer, and a second cladding layer formed on a semiconductor substrate, wherein the active region consists of multiple stacks (periods) of a unit-cell structure, which is comprised of a carrier-multiplication layer structure for multiplying carriers, a carrier guide layer structure, and an QW active region to which carriers are injected, wherein intersubband optical radiative transitions of the carriers occur. Here, the carriers multiplied while passing though the carrier-multiplication layer structure, and injected into a optical transition level of the QW active region can achieve the high population inversion effectively, thereby high laser output power can be obtained with less stacked compact structure.

    Abstract translation: 提供了一种雪崩量子子带内过渡半导体激光器。 激光器包括:形成在半导体衬底上的第一覆层,第一波导层,有源区,第二波导层和第二覆层,其中有源区由单元的多个堆叠(周期)组成 - 单元结构,其由用于乘法器的载波倍增层结构,载波引导层结构和注入载流子的QW有源区组成,其中载波的子带间光辐射跃迁发生。 这里,载波在通过载波倍增层结构的同时相乘,并且注入到QW有源区的光跃迁电平中可以有效地实现高群体反转,从而可以获得较小的堆叠紧凑结构的高激光输出功率。

    Method of fabricating semiconductor optical device
    23.
    发明申请
    Method of fabricating semiconductor optical device 有权
    制造半导体光学器件的方法

    公开(公告)号:US20060189016A1

    公开(公告)日:2006-08-24

    申请号:US11293615

    申请日:2005-12-02

    Abstract: Provided is a method of fabricating a semiconductor optical device for use in a subscriber or a wavelength division multiplexing (WDM) optical communication system, in which a laser diode (LD) and a semiconductor optical amplifier (SOA) are integrated in a single active layer. The laser diode (LD) and the semiconductor optical amplifier (SOA) are optically connected to each other, and electrically insulated from each other by ion injection, whereby light generated from the LD is amplified by the SOA to provide low oscillation start current and high intensity of output light when current is individually injected through each electrode.

    Abstract translation: 提供一种制造用于用户或波分复用(WDM)光通信系统的半导体光学器件的方法,其中激光二极管(LD)和半导体光放大器(SOA)集成在单个有源层中 。 激光二极管(LD)和半导体光放大器(SOA)彼此光学连接,并通过离子注入彼此电绝缘,由LD产生的光被SOA放大,以提供低振荡起始电流和高 当通过每个电极单独注入电流时输出光的强度。

    High speed semiconductor phototransistor
    24.
    发明授权
    High speed semiconductor phototransistor 失效
    高速半导体光电晶体管

    公开(公告)号:US5844253A

    公开(公告)日:1998-12-01

    申请号:US954738

    申请日:1997-10-20

    CPC classification number: B82Y10/00 H01L31/0352 H01L31/1105

    Abstract: The present invention relates to an ultra-high speed semiconductor phototransistor which comprises a substrate. A conductive collector layer, on which a collector electrode is formed, is formed on the substrate. A collector barrier layer for collector electric potential is formed on the conductive collector layer. A conductive base layer, on which a base electrode is formed, is formed on the collector electric potential barrier layer. An emitter barrier layer for emitter electric potential is formed on the conductive base layer for injecting hot-electrons onto the conductive base layer. The emitter barrier layer for emitter electric potential further comprises various sizes of quantum-dot array combination structures for absorbing an infrared ray. A blocking barrier layer positioned beneath the quantum-dot array combination structures reduces a dark current passed through the quantum-dot array combination structure. A second buffer layer positioned beneath the blocking barrier layer absorbs an electric potential change in the quantum-dot array combination structure due to the applied voltage. A conductive emitter layer, on which an emitter electrode is formed, is formed on the emitter barrier layer for emitter electric potential.

    Abstract translation: 本发明涉及一种包括基板的超高速半导体光电晶体管。 在基板上形成有形成有集电极的导电性集电体层。 集电极电位的集电极势垒层形成在导电集电极层上。 在集电极势垒层上形成有形成有基极的导电性基底层。 在用于将热电子注入导电性基底层的导电性基底层上形成发射极电位的发射极阻挡层。 用于发射极电位的发射极阻挡层还包括用于吸收红外线的各种尺寸的量子点阵列组合结构。 位于量子点阵列组合结构下方的阻挡层减少了通过量子点阵列组合结构的暗电流。 位于阻挡阻挡层下方的第二缓冲层由于所施加的电压而吸收量子点阵列组合结构中的电位变化。 在用于发射极电位的发射极阻挡层上形成有形成有发射极的导电发射极层。

    Resonant tunneling hot electron device
    25.
    发明授权
    Resonant tunneling hot electron device 失效
    谐振隧道热电子器件

    公开(公告)号:US5770869A

    公开(公告)日:1998-06-23

    申请号:US717905

    申请日:1996-09-23

    CPC classification number: B82Y10/00 H01L29/7376

    Abstract: A resonant tunneling hot electron device uses an interband tunneling double barrier structure as an electron injection layer and is capable of increasing PVR and peak current using an enhanced resonant interband tunneling effect through alignment of a hole confined state and an electron confined state by a Stark shift effect. It includes a conductive collector layer formed on a substrate; a conductive base layer having a conduction band minimum lower than that of the emitter barrier layer and the collector barrier layer and having high electron mobility; a collector barrier layer formed between the base layer and the collector layer; and an electron injection electron barrier layer of an enhanced interband resonant tunneling quantum well broken band gap heterostructure formed between the emitter layer and the base layer. This structure exploits an enhanced resonant tunneling effect due to alignments of quantum confined states by Stark shifts.

    Abstract translation: 谐振隧道热电子器件使用带间隧穿双阻挡结构作为电子注入层,并且能够通过利用斯塔克位移对空穴限制状态和电子约束状态的增强的谐振带间隧穿效应来增加PVR和峰值电流 影响。 它包括形成在基底上的导电收集层; 导电基层,其导带的最小值低于发射极阻挡层和集电极阻挡层的导带,并具有高的电子迁移率; 形成在所述基底层和所述集电体层之间的集电极阻挡层; 以及在发射极层和基极层之间形成的增强的带间谐振隧穿量子阱断裂带隙异质结构的电子注入电子势垒层。 该结构利用由Stark偏移量化限制状态的对齐而增强的谐振隧穿效应。

    Semiconductor integrated circuits including optoelectronic device for changing optical phase
    26.
    发明授权
    Semiconductor integrated circuits including optoelectronic device for changing optical phase 有权
    包括用于改变光学相位的光电器件的半导体集成电路

    公开(公告)号:US08422834B2

    公开(公告)日:2013-04-16

    申请号:US12746167

    申请日:2008-06-03

    CPC classification number: G02F1/218 G02F2001/212 G02F2201/302

    Abstract: Provided is a semiconductor integrated circuit. The semiconductor integrated circuit includes a semiconductor pattern disposed on a substrate and including an optical waveguide part and a pair of recessed portions. The optical waveguide part has a thickness ranging from about 0.05 μm to about 0.5 μm. The recessed portions are disposed on both sides of the optical waveguide part and have a thinner thickness than the optical waveguide part. A first doped region and a second doped region are disposed in the recessed portions, respectively. The first and second doped regions are doped with a first conductive type dopant and a second conductive type dopant, respectively. An intrinsic region is formed in at least the optical waveguide part to contact the first and second doped regions.

    Abstract translation: 提供了一种半导体集成电路。 半导体集成电路包括设置在基板上并且包括光波导部分和一对凹部的半导体图案。 光波导部分的厚度范围为约0.05μm至约0.5μm。 凹部设置在光波导部分的两侧,并且具有比光波导部分更薄的厚度。 第一掺杂区域和第二掺杂区域分别设置在凹部中。 第一和第二掺杂区域分别掺杂有第一导电型掺杂剂和第二导电型掺杂剂。 在至少光波导部分中形成本征区域以接触第一和第二掺杂区域。

    Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same
    27.
    发明授权
    Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same 有权
    具有负光导特性的锗外延薄膜的生长和使用其的光电二极管

    公开(公告)号:US08188512B2

    公开(公告)日:2012-05-29

    申请号:US12536098

    申请日:2009-08-05

    Abstract: A method of growing a germanium (Ge) epitaxial thin film having negative photoconductance characteristics and a photodiode using the same are provided. The method of growing the germanium (Ge) epitaxial thin film includes growing a germanium (Ge) thin film on a silicon substrate at a low temperature, raising the temperature to grow the germanium (Ge) thin film, and growing the germanium (Ge) thin film at a high temperature, wherein each stage of growth is performed using reduced pressure chemical vapor deposition (RPCVD). The three-stage growth method enables formation of a germanium (Ge) epitaxial thin film characterized by alleviated stress on a substrate, a lowered penetrating dislocation density, and reduced surface roughness.

    Abstract translation: 提供一种生长具有负光导特性的锗(Ge)外延薄膜和使用其的光电二极管的方法。 生长锗(Ge)外延薄膜的方法包括在低温下在硅衬底上生长锗(Ge)薄膜,升高温度以生长锗(Ge)薄膜,并使锗(Ge) 在高温下的薄膜,其中每个生长阶段使用减压化学气相沉积(RPCVD)进行。 三阶段生长方法能够形成特征在于在基板上减轻应力,降低的穿透位错密度和降低的表面粗糙度的锗(Ge)外延薄膜。

    Method of forming optical waveguide
    28.
    发明授权
    Method of forming optical waveguide 有权
    光波导形成方法

    公开(公告)号:US08017420B2

    公开(公告)日:2011-09-13

    申请号:US12491443

    申请日:2009-06-25

    CPC classification number: G02B6/136 G02B6/132

    Abstract: Provided is a method of forming optical waveguide. The method includes forming a trench on a semiconductor substrate to define an active portion, and partially oxidizing the active portion. An non-oxidized portion of the active portion is included in a core through which an optical signal passes, and an oxidized portion of the active portion is included in a cladding.

    Abstract translation: 提供一种形成光波导的方法。 该方法包括在半导体衬底上形成沟槽以限定有源部分,并部分氧化活性部分。 有源部分的非氧化部分包括在光信号通过的芯中,有源部分的氧化部分包含在包层中。

Patent Agency Ranking