摘要:
Light emitting devices and methods of fabricating light emitting devices that emit at wavelengths less than 360 nm with wall plug efficiencies of at least than 4% are provided. Wall plug efficiencies may be at least 5% or at least 6%. Light emitting devices and methods of fabricating light emitting devices that emit at wavelengths less than 345 nm with wall plug efficiencies of at least than 2% are also provided. Light emitting devices and methods of fabricating light emitting devices that emit at wavelengths less than 330 nm with wall plug efficiencies of at least than 0.4% are provided. Light emitting devices and methods of fabricating light emitting devices having a peak output wavelength of not greater than 360 nm and an output power of at least 5 mW, having a peak output wavelength of 345 nm or less and an output power of at least 3 mW and/or a peak output wavelength of 330 nm or less and an output power of at least 0.3 mW at a current density of less than about 0.35 μA/μm2 are also provided. The semiconductor light emitting devices may have a direct current lifetime of at least 100 hours, at least 500 hours or at least 1000 hours.
摘要翻译:提供发光装置和制造发射波长小于360nm,壁塞效率至少为4%的发光装置的方法。 墙壁插头效率可以至少为5%或至少为6%。 还提供了发光装置和制造发射波长小于345nm并具有至少2%壁塞效率的发光装置的方法。 提供发光装置和制造发射波长小于330nm,壁塞效率至少为0.4%的发光器件的方法。 具有峰值输出波长不大于360nm和输出功率至少为5mW的发光器件的发光器件和方法,具有345nm或更小的峰值输出波长和至少3mW的输出功率 和/或峰值输出波长为330nm以下,输出功率为0.3mW以下,电流密度小于0.35μA/ m 2以下。 半导体发光器件可以具有至少100小时,至少500小时或至少1000小时的直流电寿命。
摘要:
Light emitting devices and methods of fabricating light emitting devices having a current blocking mechanism below the wire bond pad are provided. The current blocking mechanism may be a reduced conduction region in an active region of the device. The current blocking mechanism could be a damage region of a layer on which a contact is formed. The current blocking mechanism could be a Schottky contact between an ohmic contact and the active region of the device. A semiconductor junction, such as a PN junction could also be provided between the ohmic contact and the active region.
摘要:
A light emitting diode structure includes a diode region and a metal stack on the diode region. The metal stack includes a barrier layer on the diode region and a bonding layer on the barrier layer. The barrier layer is between the bonding layer and the diode region. The bonding layer includes gold, tin and nickel. A weight percentage of tin in the bonding layer is greater than 20 percent and a weight percentage of gold in the bonding layer is less than about 75 percent. A weight percentage of nickel in the bonding layer may be greater than 10 percent.
摘要:
Light emitting devices and methods of fabricating light emitting devices that emit at wavelengths less than 360 nm with wall plug efficiencies of at least than 4% are provided. Wall plug efficiencies may be at least 5% or at least 6%. Light emitting devices and methods of fabricating light emitting devices that emit at wavelengths less than 345 nm with wall plug efficiencies of at least than 2% are also provided. Light emitting devices and methods of fabricating light emitting devices that emit at wavelengths less than 330 nm with wall plug efficiencies of at least than 0.4% are provided. Light emitting devices and methods of fabricating light emitting devices having a peak output wavelength of not greater than 360 nm and an output power of at least 5 mW, having a peak output wavelength of 345 nm or less and an output power of at least 3 mW and/or a peak output wavelength of 330 nm or less and an output power of at least 0.3 mW at a current density of less than about 0.35 μA/μm2 are also provided. The semiconductor light emitting devices may have a direct current lifetime of at least 100 hours, at least 500 hours or at least 1000 hours.
摘要:
A light emitting diode chip a support layer having a first face and a second face opposite the first face, a diode region on the first face of the support layer, and a bond pad on the second face of the support layer. The bond pad includes a gold-tin structure having a weight percentage of tin of 50% or more. The light emitting diode chip may include a plurality of active regions that are connected in electrical series on the light emitting diode chip.
摘要:
A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
摘要:
Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
摘要:
A light emitting diode is disclosed that includes a silicon carbide substrate and a light emitting structure formed from the Group III nitride material system on the substrate. The diode has an area greater than 100,000 square microns and has a radiant flux at 20 milliamps current of at least 29 milliwatts at its dominant wavelength between 390 and 540 nanometers.