Abstract:
Provided is a double waveguide electroabsorption modulator, in which two spot size converters are integrated between first and second optical waveguides, thereby reducing an insertion loss between an optical fiber and an optical modulator while favorably operating even in high input optical power. Therefore, the electroabsorption modulator can stably operate in higher input optical power while reducing an optical coupling loss and an optical confinement factor (OCF).
Abstract:
The image sensor package includes: an image sensor chip including an image sensing unit which is positioned in an upper central portion thereof and including a plurality of chip bonding pads formed around the image sensing; a transparent board including a lower surface on which a first line electrically connected to the chip bonding pads is formed and the transparent board being arranged with the image sensor chip so that the lower surface faces the image sensing unit; and a plurality of second lines connected to the first line and extending along sidewalls of the image sensor chip to be exposed under a lower surface of the image sensor chip.
Abstract:
A method for manufacturing a tape wiring board in accordance with the present invention may employ an imprinting process in forming a wiring pattern thereby reducing the number of processes for manufacturing a tape wiring board and allowing the manufacturing process to proceed in a single production line. Therefore, the manufacturing time and cost may be reduced. A profile of the wiring pattern may be determined by the shape of an impression pattern of a mold. This may establish the top width of inner and outer leads and incorporate fine pad pitch. Although ILB and OLB process may use an NCP, connection reliability may be established due to the soft and elastic wiring pattern.
Abstract:
A stacked chip package includes a substrate having an upper surface and a lower surface, a first semiconductor chip having an upper surface and a lower surface, wherein the lower surface of the first semiconductor chip is attached to the upper surface of the substrate and the upper surface of the first semiconductor chip includes a plurality of first electrode pads, and a second semiconductor chip having an upper surface and a lower surface. The lower surface of the second semiconductor chip is attached to the upper surface of the first semiconductor chip, and the lower surface of the second semiconductor chip includes trenches that correspond to the locations of the first electrode pads on the upper surface of the first semiconductor chip.
Abstract:
Provided are a method of forming a bump whose upper surface is substantially flat and whose area can be enlarged in a uniform pad pitch to simplify mounting a liquid crystal display drive IC (LDI) and a semiconductor chip and a mount structure using the method to minimize a pad area inside the chip. Thus, the pad area on an edge of a conventional chip is minimized and the bump is formed in a substantially flat location inside the chip and an electrical connection between the pad and the bump is performed by a redistribution metal line.
Abstract:
The present invention provides the photodetector comprising a lower cladding layer including a n-type doped region, an absorbing layer, an upper cladding layer including a p-type doped region, and ohmic electrodes connected to said lower cladding layer and said upper cladding layer, wherein said p-type doped region extends to be formed into said absorbing layer by a predetermined length.In accordance with present invention, by reducing effect of the hetero junction barrier where holes move in the intrinsic region, the operating voltage can be decreased and the bandwidth can be improved.
Abstract:
A method for manufacturing a chip scale package includes: providing a redistribution substrate; attaching a semiconductor wafer to the redistribution substrate; forming external terminals on the redistribution substrate; and separating the semiconductor wafer and the redistribution substrate into individual integrated circuits. The method can further include forming a buffer layer by filling a gap between the semiconductor wafer and the redistribution substrate with a dielectric material. Another method is the same as the method described above except that instead of the semiconductor wafer, individual integrated circuit chips attach to the redistribution substrate. Meanwhile, a semiconductor package includes: a semiconductor integrated circuit having chip pads formed thereon; interconnection bumps overlying on the chip pads; a patterned metal layer connecting to the interconnetion bumps; a first dielectric layer under the patterned metal layer; a second dielectric layer overlying on the patterned metal layer; and terminal pads connecting to the patterned metal layer. The semiconductor package can further include external terminals connecting to the terminal pads, a third dielectric layer filling a gap between the first dielectric layer and the semiconductor integrated circuit.
Abstract:
A user terminal apparatus and a user interface providing method are provided. The user terminal apparatus providing a control mode to control an apparatus to be controlled and an application mode to operate applications includes a display unit which displays a control mode providing screen and an application mode providing screen, a user interface unit which receives an input of a user's order to select one of the control mode and the application mode, a communication interface unit which communicates with the apparatus to be controlled, and a controller which controls, if the control mode is selected, to display a control screen corresponding to the state of the apparatus to be controlled based on state information of the apparatus to be controlled which is received through the communication interface unit.
Abstract:
Provided is a photo detector. The photo detector includes: an avalanche photodiode; a bias circuit supplying a bias voltage to one end of the avalanche photodiode; a detection circuit connected to the other end of the avalanche photodiode and detecting a photoelectric current occurring in the avalanche photodiode; and a coupling capacitor connected to the one end or the other end of the avalanche photodiode and supplying a coupling voltage to drive the avalanche photodiode in a Geiger mode.
Abstract:
A method is provided for controlling a television including a user input part for manipulating a channel adjusting item. The method includes displaying a channel map showing a predetermined number of channels including a tuned broadcast channel if the channel adjusting item is selected through the user input part, and a channel setting information menu corresponding to one of the channels shown in the channel map. Thus, the television control method not only allows a user to easily and simply recognize a channel setting state according to channels when the user wants to adjust channel-related functions, but also allows a user to conveniently and effectively adjust the channel setting state according to the channels.