摘要:
A system and method for providing a passivation structure for semiconductor devices is provided. In an embodiment, the passivation structure comprises a first barrier layer and a second barrier layer, wherein the second barrier layer may comprise a material, such as cobalt and/or nickel, that is less pure than the first barrier layer. In another embodiment, a single gradient barrier layer is formed. In this embodiment the single gradient barrier layer exhibits a greater pure conductive material, such as cobalt and/or nickel, nearer the conductive line than near the surface.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
摘要:
Semiconductor devices and methods for fabricating the same. The devices include a substrate, a catalyst layer, a second dielectric layer, and carbon nanotubes (CNTs). The substrate comprises an overlying first dielectric layer with an electrode embedded therein. The catalyst layer overlies the electrode and the first dielectric layer and substantially comprises Co and M1, wherein M1 is selected from a group consisting of W, P, B, Bi, Ni, and a combination thereof. The second dielectric layer overlies the catalyst layer and comprises an opening exposing parts of the catalyst layer. The carbon nanotubes (CNTs) are disposed on the exposed catalyst layer and electrically connect the electrode.
摘要:
A conductive polymer between two metallic layers acts a glue layer, a barrier layer or an activation seed layer. The conductive polymer layer is employed to encapsulate a copper interconnection structure to prevent copper diffusion into any overlying layers and improve adhesive characteristics between the copper and any overlying layers.
摘要:
A selective electroless plating operation provides for the selective deposition of a metal film only on exposed silicon surfaces of a semiconductor substrate and not on other surfaces such as dielectric surfaces. The plating solution includes metal ions and advantageously also includes dopant impurity ions. The pure metal or metal alloy film formed on the exposed silicon surfaces is then heat treated to form a metal silicide on the exposed silicon surfaces and to drive the dopant impurities to the interface formed between the exposed silicon surfaces and the metal silicide film.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
摘要:
A method for forming a semiconductor device is described. An opening is formed in a first dielectric layer, exposing an active region of the transistor, and an atomic layer deposited (ALD) TaN barrier is conformably formed in the opening, at a thickness less than 20 Å. A copper layer is formed over the atomic layer deposited (ALD) TaN barrier to fill the opening.
摘要:
A method for forming a barrier layer upon a copper containing conductor layer employs a hydrogen containing plasma treatment of the copper containing conductor layer followed by an argon plasma treatment of the copper containing conductor layer. The barrier layer may be formed employing a chemical vapor deposition method, such as an atomic layer deposition method. When the deposition method employs a metal and carbon containing source material, the two-step plasma pretreatment provides the barrier layer with enhanced electrical properties.
摘要:
A semiconductor device having a nonconductive cap layer comprising a first metal element. The nonconductive cap layer comprises a first metal nitride, a first metal oxide, or a first metal oxynitride over conductive lines and an insulating material between the conductive lines. An interface region may be formed over the top surface of the conductive lines, the interface region including the metal element of the cap layer. The cap layer prevents the conductive material in the conductive lines from migrating or diffusing into adjacent subsequently formed insulating material layers. The cap layer may also function as an etch stop layer.