摘要:
A selective electroless plating operation provides for the selective deposition of a metal film only on exposed silicon surfaces of a semiconductor substrate and not on other surfaces such as dielectric surfaces. The plating solution includes metal ions and advantageously also includes dopant impurity ions. The pure metal or metal alloy film formed on the exposed silicon surfaces is then heat treated to form a metal silicide on the exposed silicon surfaces and to drive the dopant impurities to the interface formed between the exposed silicon surfaces and the metal silicide film.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
摘要:
A conductive polymer between two metallic layers acts a glue layer, a barrier layer or an activation seed layer. The conductive polymer layer is employed to encapsulate a copper interconnection structure to prevent copper diffusion into any overlying layers and improve adhesive characteristics between the copper and any overlying layers.
摘要:
A semiconductor interconnection structure is manufactured as follows. First, a substrate with a first dielectric layer and a second dielectric layer is formed. Subsequently, an opening is formed in the second dielectric layer. A thin metal layer and a seed layer are formed in sequence on the surface of the second dielectric layer in the opening, wherein the metal layer comprises at least one metal species having phase segregation property of a second conductor. The wafer of the substrate is subjected to a thermal treatment, by which most of the metal species in the metal layer at a bottom of the opening is diffused to a top surface of the second conductor to form a metal-based oxide layer. Afterwards, the wafer is subjected to planarization, so as to remove the second conductor outside the opening.
摘要:
A method for fabricating a semiconductor interconnect device. A preferred embodiment comprises forming a low-k or very low-k dielectric layer on a wafer substrate and forming a recess in the dielectric layer that exposes a region on the substrate to which electrical contact is desired. A barrier layer is formed by first forming an organic layer on the walls of the substrate, then forming a catalyst metal layer on the organic layer, and finally forming a barrier metal layer over the catalyst layer. The remainder of the recess formed in the dielectric layer is then filled with a conductive material such as copper that will function as the main electrical connector to the contact region on the substrate.
摘要:
A system and method for providing a passivation structure for semiconductor devices is provided. In an embodiment, the passivation structure comprises a first barrier layer and a second barrier layer, wherein the second barrier layer may comprise a material, such as cobalt and/or nickel, that is less pure than the first barrier layer. In another embodiment, a single gradient barrier layer is formed. In this embodiment the single gradient barrier layer exhibits a greater pure conductive material, such as cobalt and/or nickel, nearer the conductive line than near the surface.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a semiconductor substrate; a dielectric layer over the semiconductor substrate; an opening in the dielectric layer; a conductive line in the opening; a metal alloy layer overlying the conductive line; a first metal silicide layer overlying the metal alloy layer; and a second metal silicide layer different from the first metal silicide layer on the first metal silicide layer. The metal alloy layer and the first and the second metal silicide layers are substantially vertically aligned to the conductive line.
摘要:
Semiconductor devices and methods for fabricating the same. The devices include a substrate, a catalyst layer, a second dielectric layer, and carbon nanotubes (CNTs). The substrate comprises an overlying first dielectric layer with an electrode embedded therein. The catalyst layer overlies the electrode and the first dielectric layer and substantially comprises Co and M1, wherein M1 is selected from a group consisting of W, P, B, Bi, Ni, and a combination thereof. The second dielectric layer overlies the catalyst layer and comprises an opening exposing parts of the catalyst layer. The carbon nanotubes (CNTs) are disposed on the exposed catalyst layer and electrically connect the electrode.
摘要:
A conductive polymer between two metallic layers acts a glue layer, a barrier layer or an activation seed layer. The conductive polymer layer is employed to encapsulate a copper interconnection structure to prevent copper diffusion into any overlying layers and improve adhesive characteristics between the copper and any overlying layers.