Abstract:
A method of fabricating a semiconductor device can include the following steps: (i) providing an initial sub-assembly including a trench-defining layer having a top surface; (ii) refining the initial sub-assembly into a first trench-cut intermediate sub-assembly by removing material to form an upper tier of a trench extending downward from the top surface of the trench-defining layer, the upper tier of the trench including two lateral trench surfaces and a bottom trench surface; and (iii) refining the first trench-cut intermediate sub-assembly into a second trench-cut intermediate sub-assembly by selectively removing material in a downwards direction starting from the bottom surface of the trench to form a lower tier of the trench, with the selective removal of material leaving at least a first defect blocking member in the lower tier of the trench.
Abstract:
A method may include forming a germanium-including fin on a substrate, and forming a dummy gate extending over the germanium-including fin, creating a channel under the gate and a source/drain region of the germanium-including fin extending from under the dummy gate on each side of the dummy gate. An in-situ p-type doped silicon germanium layer may be grown over the source/drain region, the germanium-including fin having a higher concentration of germanium than the in-situ p-type doped silicon germanium layer. An anneal thermally mixes the germanium of the in-situ p-type doped silicon germanium layer and the germanium of the germanium-including fin in the source/drain region of the germanium-including fin and diffuses the p-type dopant of the in-situ p-type doped silicon germanium layer into the channel of the germanium-including fin, forming a source/drain extension. A portion of the channel has a higher germanium concentration than the source/drain region.
Abstract:
A lateral bipolar junction transistor is fabricated using a semiconductor-on-insulator substrate. The transistor includes a germanium gradient within a doped silicon base region, there being an increasing germanium content in the direction of the collector region of the transistor. The use of a substrate including parallel silicon fins to fabricate lateral bipolar junction transistors facilitates the inclusion of both CMOS FinFET devices and lateral bipolar junction transistors having graded silicon germanium base regions on the same chip.
Abstract:
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming an abrupt junction in the channel regions of high density technologies, such as tight pitch FinFET devices, using recessed source-drain (S-D) regions and annealing techniques. In an embodiment, a faceted buffer layer, deposited before the S-D region is formed, may be used to control the profile and dopant concentration of the junction under the channel. In another embodiment, the profile and dopant concentration of the junction may be controlled via a dopant concentration gradient in the S-D region.
Abstract:
A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.
Abstract:
A method of forming a semiconductor on a porous semiconductor structure. The method may include forming a stack, the stack includes (from bottom to top) a substrate, a base silicon layer, a thick silicon layer, and a thin silicon layer, where the thin silicon layer and the thick silicon layer are relaxed; converting the thick silicon layer into a porous silicon layer using a porousification process; and forming a III-V layer on the thin silicon layer, where the III-V layer is relaxed, the thin silicon layer is strained, and the porous silicon layer is partially strained.
Abstract:
A silicon-carbon alloy layer and a silicon-germanium alloy layer are sequentially formed on a silicon-containing substrate with epitaxial alignment. Trenches are formed in the silicon-germanium alloy layer by an anisotropic etch employing a patterned hard mask layer as an etch mask and the silicon-carbon alloy layer as an etch stop layer. Fin-containing semiconductor material portions are formed on a bottom surface and sidewalls of each trench with epitaxial alignment with the silicon-germanium alloy layer and the silicon-carbon alloy layer. The hard mask layer and the silicon-germanium alloy layer are removed, and an oxygen-impermeable spacer is formed on sidewalls of each fin-containing semiconductor material portion. Physically exposed semiconductor portions are converted into semiconductor oxide portions, and the oxygen-impermeable spacers are removed. The remaining portions of the fin-containing semiconductor portions include semiconductor fins, which can be employed to form semiconductor devices.
Abstract:
A method for fabricating a semiconductor device comprises forming a nanowire on an insulator layer at a surface of a substrate; forming a dummy gate over a portion of the nanowire and a portion of the insulator layer; forming recesses in the insulator layer on opposing sides of the dummy gate; forming spacers on opposing sides of the dummy gate; forming source regions and drain regions in the recesses in the insulator layer on opposing sides of the dummy gate; depositing an interlayer dielectric on the source regions and the drain regions; removing the dummy gate to form a trench; removing the insulator layer under the nanowire such that a width of the trench underneath the nanowire is equal to or less than a distance between the spacers; and forming a replacement gate in the trench.
Abstract:
A method for fabricating a semiconductor device comprises forming a nanowire on an insulator layer at a surface of a substrate; forming a dummy gate over a portion of the nanowire and a portion of the insulator layer; forming recesses in the insulator layer on opposing sides of the dummy gate; forming spacers on opposing sides of the dummy gate; forming source regions and drain regions in the recesses in the insulator layer on opposing sides of the dummy gate; depositing an interlayer dielectric on the source regions and the drain regions; removing the dummy gate to form a trench; removing the insulator layer under the nanowire such that a width of the trench underneath the nanowire is equal to or less than a distance between the spacers; and forming a replacement gate in the trench.
Abstract:
Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.