Abstract:
A conductive source/drain contact is formed within a trench overlying a raised epitaxial source/drain junction. The conductive contact includes a conductive liner and a conductive fill material formed directly over the conductive liner. The conductive fill material is selected from a platinum group metal such as ruthenium. The conductive liner may be directionally deposited into the trench and is adapted to form a metal silicide in situ through a reaction with the epitaxial layer.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to post spacer self-aligned cut structures and methods of manufacture. The method includes: providing a non-mandrel cut; providing a mandrel cut; forming blocking material on underlying conductive material in the non-mandrel cut and the mandrel cut; forming trenches with the blocking material acting as a blocking mask at the mandrel cut and the non-mandrel cut; and filling the trenches with metallization features such that the metallization features have a tip to tip alignment.
Abstract:
A method provides a structure having a FinFET in an Rx region, the FinFET including a channel, source/drain (S/D) regions and a gate, the gate including gate metal. A cap is formed over the gate having a liner and a core. Trench silicide (TS) is disposed on sides of the gate. The TS is recessed to a level above a level of the gate and below a level of the core. The liner is etched to the level of the TS. An oxide layer is disposed over the structure. A CB trench is patterned into the oxide layer within the Rx region to expose the core at a shelf portion of the CB trench. The core is etched to extend the CB trench to a bottom at the gate metal. The shelf portion having a larger area than the bottom. The CB trench is metalized to form a CB contact.
Abstract:
A method of fabricating raised fin structures is provided, the fabricating including: providing a substrate and at least one dielectric layer over the substrate; forming a trench in the at least one dielectric layer, the trench having a lower portion, a lateral portion, and an upper portion, the upper portion being at least partially laterally offset from the lower portion and being joined to the lower portion by the lateral portion; and, growing a material in the trench to form the raised fin structure, wherein the trench is formed to ensure that any growth defect in the lower portion of the trench terminates either in the lower portion or the lateral portion of the trench and does not extend into the upper portion of the trench.
Abstract:
A methodology for forming a self-aligned contact (SAC) that exhibits reduced likelihood of a contact-to-gate short circuit failure and the resulting device are disclosed. Embodiments may include forming a replacement metal gate, with spacers at opposite sides thereof, on a substrate, forming a recess in an upper surface of the spacers along outer edges of the replacement metal gate, and forming an aluminum nitride (AlN) cap over the metal gate and in the recess.
Abstract:
A process is provided for methods of reducing contamination of the self-forming barrier of an ultra-low k layer during semiconductor fabrication. In one aspect, a method includes: providing a cured ultra-low k film which contains at least one trench, and the pores of the film are filled with a pore-stuffing material; removing exposed pore-stuffing material at the surface of the trench to form exposed pores; and forming a self-forming barrier layer on the surface of the trench.